首页> 外文期刊>Nuclear fusion >Fusion nuclear science facilities and pilot plants based on the spherical tokamak
【24h】

Fusion nuclear science facilities and pilot plants based on the spherical tokamak

机译:融合基于球形托卡马克的核科学设施和试验工厂

获取原文
获取原文并翻译 | 示例
           

摘要

A fusion nuclear science facility (FNSF) could play an important role in the development of fusion energy by providing the nuclear environment needed to develop fusion materials and components. The spherical torus/tokamak (ST) is a leading candidate for an FNSF due to its potentially high neutron wall loading and modular configuration. A key consideration for the choice of FNSF configuration is the range of achievable missions as a function of device size. Possible missions include: providing high neutron wall loading and fluence, demonstrating tritium self-sufficiency, and demonstrating electrical self-sufficiency. All of these missions must also be compatible with a viable divertor, first-wall, and blanket solution. ST-FNSF configurations have been developed simultaneously incorporating for the first time: (1) a blanket system capable of tritium breeding ratio TBR ≈ 1, (2) a poloidal field coil set supporting high elongation and triangularity for a range of internal inductance and normalized beta values consistent with NSTX/NSTX-U previous/planned operation, (3) a long-legged divertor analogous to the MAST-U divertor which substantially reduces projected peak divertor heat-flux and has all outboard poloidal field coils outside the vacuum chamber and superconducting to reduce power consumption, and (4) a vertical maintenance scheme in which blanket structures and the centerstack can be removed independently. Progress in these ST-FNSF missions versus configuration studies including dependence on plasma major radius R_0 for a range 1 m-2.2 m are described. In particular, it is found the threshold major radius for TBR = 1 is R_0 ≥ 1.7 m, and a smaller R_0 = 1 m ST device has TBR ≈ 0.9 which is below unity but substantially reduces T consumption relative to not breeding. Calculations of neutral beam heating and current drive for non-inductive ramp-up and sustainment are described. An A = 2, R_0 = 3 m device incorporating high-temperature superconductor toroidal field coil magnets capable of high neutron fluence and both tritium and electrical self-sufficiency is also presented following systematic aspect ratio studies.
机译:聚变核科学机构(FNSF)通过提供开发聚变材料和组件所需的核环境,可以在聚变能的发展中发挥重要作用。球形圆环/托卡马克(ST)由于其潜在的高中子壁载荷和模块化结构而成为FNSF的领先候选者。选择FNSF配置的关键考虑因素是可实现任务的范围与设备大小的关系。可能的任务包括:提供高的中子壁载荷和注量,证明tri的自给性,以及证明电的自给性。所有这些任务还必须与可行的分流器,第一壁和毯子解决方案兼容。同时开发了ST-FNSF配置,该配置首次包含以下内容:(1)具有blanket繁殖比TBR≈1的毯式系统,(2)极高场长线圈组,在一定范围的内部电感和归一化范围内支持高伸长率和三角形性β值与NSTX / NSTX-U先前/计划的操作一致,(3)与MAST-U偏滤器类似的长腿偏滤器,它大大减少了预计的峰值偏滤器热通量,并且在真空室和(4)垂直维护方案,其中橡皮布结构和中心烟囱可独立移除。描述了这些ST-FNSF任务相对于配置研究的进展,包括在1 m-2.2 m范围内对血浆主半径R_0的依赖性。特别是,发现TBR = 1的阈值主半径为R_0≥1.7 m,而较小的R_0 = 1 m ST设备的TBR≈0.9,该值低于1,但相对于不繁殖,T消耗量大大降低。描述了中性束加热和电流驱动的非感应式上升和维持的计算。通过系统的长宽比研究,还提出了一种A = 2,R_0 = 3 m的装置,该装置结合了具有高中子注量和tri和电自给自足的高温超导体环形场线圈磁体。

著录项

  • 来源
    《Nuclear fusion》 |2016年第10期|106023.1-106023.43|共43页
  • 作者单位

    Princeton Plasma Physics Laboratory, Princeton, NJ, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ, USA;

    University of Wisconsin, Madison, WI, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ, USA;

    Oak Ridge National Laboratory, Oak Ridge, TN, USA;

    CCFE, Culham Science Centre, Abingdon, Oxfordshire, UK;

    University of Washington, Seattle, WA, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ, USA;

    Tokamak Energy Ltd, Milton Park, Oxfordshire, UK;

    University of Texas at Austin, Austin, TX, USA;

    University of Wisconsin, Madison, WI, USA;

    University of Wisconsin, Madison, WI, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ, USA;

    Tokamak Energy Ltd, Milton Park, Oxfordshire, UK;

    University of Wisconsin, Madison, WI, USA;

    CCFE, Culham Science Centre, Abingdon, Oxfordshire, UK;

    Princeton Plasma Physics Laboratory, Princeton, NJ, USA;

    Tokamak Energy Ltd, Milton Park, Oxfordshire, UK;

    University of Texas at Austin, Austin, TX, USA;

    University of Texas at Austin, Austin, TX, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ, USA;

    University of Wisconsin, Madison, WI, USA;

    College of William and Mary, Williamsburg, VA, USA,Lawrence Livermore National Laboratory, Livermore, CA, USA;

    University of Wisconsin, Madison, WI, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ, USA;

    Columbia University, New York, NY, USA;

    Lawrence Livermore National Laboratory, Livermore, CA, USA;

    University of Texas at Austin, Austin, TX, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    fusion nuclear science facility; pilot plant; spherical tokamak; tritium breeding; negative neutral beams; super-X divertor; high-temperature superconductors;

    机译:聚变核科学设施;试验工厂;球形托卡马克t繁殖负中性光束;超级X偏滤器;高温超导体;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号