首页> 外文期刊>Nuclear Engineering and Design >Characterization of crystallisation processes with electrical impedance spectroscopy
【24h】

Characterization of crystallisation processes with electrical impedance spectroscopy

机译:用电阻抗光谱法表征结晶过程

获取原文
获取原文并翻译 | 示例
       

摘要

The surfaces of crystalline particles are often charged and therefore crystals have an electrical double layer associated with their surfaces when, for example, suspended in an aqueous medium. Under the influence of an external electric field, an electrical dipole moment can be induced due to polarization of the electrical double layer. The complex impedance, conductivity, relaxation time and phase shift caused by the polarization are all related to particle characteristics, e.g. the size, polymorph and concentration. The method of electrical impedance spectroscopy (EIS) provides, potentially, a capability for characterizing the particles in colloidal suspensions. Here some preliminary observations of physical-chemistry fundamentals relating to the use of electrical impedance spectroscopy, potentially, for particle sizing in crystallisation processes are reported. Firstly, the effects of L-glutamic acid (LGA) solids concentration, solute concentration and temperature on the measured EIS spectra were studied. The results show that the effects of solid LGA concentration and solute concentration on the relaxation frequency and phase angle are very small. Secondly, the temperature effect was analysed. By deducting the contribution due to the changes in concentration and temperature from the total change in relaxation frequency, the experimental observations, although preliminary in nature, suggest that the crystal size can be related directly to relaxation frequency (in this study, the shape of LGA crystals is assumed to be spherical so the crystal size means the diameter of the sphere). The experimental observations can be explained with either static polarization models or particle vibration models. On-line measurement of electrical impedance spectra associated with LGA nucleation-growth processes are presented. The information content of the complex electrical impedance, phase angle shift and relaxation times of the crystal suspensions during a crystallisation process is assessed. The results show that during nucleation the imaginary part of the electrical-impedance response changes significantly and the relaxation frequency decreases during the growth of crystals. The longer-term objective is to develop a new spectroscopic measurement method and further, a spectroscopic tomography technique for on-line measurement of the spatial distribution of particle size in particle suspensions in liquid media.
机译:晶体颗粒的表面经常带电,因此,例如当悬浮在水性介质中时,晶体具有与其表面相关的双电层。在外部电场的影响下,由于双电层的极化,会引起电偶极矩。极化引起的复数阻抗,电导率,弛豫时间和相移都与粒子特性有关,例如大小,多晶型物和浓度。电阻抗谱法(EIS)可能提供表征胶体悬浮液中颗粒的能力。这里报道了一些物理化学基础方面的初步观察,这些物理化学基础可能涉及在结晶过程中将颗粒定径使用电阻抗光谱法。首先,研究了L-谷氨酸(LGA)固体浓度,溶质浓度和温度对测得的EIS光谱的影响。结果表明,固体LGA浓度和溶质浓度对弛豫频率和相角的影响很小。其次,分析了温度效应。通过从弛豫频率的总变化中减去浓度和温度变化的贡献,实验观察结果虽然是初步的,但表明晶体尺寸可以与弛豫频率直接相关(在本研究中,LGA的形状假设晶体是球形的,因此晶体的尺寸表示球形的直径。实验观察可以用静态极化模型或粒子振动模型来解释。提出了与LGA成核生长过程相关的电阻抗谱的在线测量。评估了结晶过程中晶体悬浮液的复电阻抗,相角偏移和弛豫时间的信息内容。结果表明,在成核过程中,电阻抗响应的虚部显着变化,并且在晶体生长过程中弛豫频率降低。长期目标是开发一种新的光谱测量方法,以及一种用于进一步在线测量液体介质中颗粒悬浮液中粒径空间分布的光谱层析技术。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2011年第6期|p.1938-1944|共7页
  • 作者单位

    Institute of Particle Science and Engineering, School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT, UK;

    Institute of Particle Science and Engineering, School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT, UK;

    Institute of Particle Science and Engineering, School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT, UK;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    c: capacitance; d: ion diffusion coefficient; r: particle radius; r: resistance; et al;

    机译:c:电容;d:离子扩散系数;r:粒子半径;r:电阻;等;
  • 入库时间 2022-08-18 00:44:33

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号