首页> 外文期刊>Nuclear Engineering and Design >Boundary conditions, temperatures, and stress intensity factors under arbitrary thermal transients via the inverse route
【24h】

Boundary conditions, temperatures, and stress intensity factors under arbitrary thermal transients via the inverse route

机译:通过逆路径在任意热瞬态下的边界条件,温度和应力强度因子

获取原文
获取原文并翻译 | 示例
       

摘要

A common threat to components is thermal shock from operational steady-state or transient thermal-states; an analysis of this type of problem ultimately requires the determination of stress intensity factors (SIF). For direct problems where all boundary conditions are known, the procedure is relatively straightforward and mathematically tractable. Although more practical from a measurement standpoint, the inverse problem where the boundary conditions must be determined from remotely determined temperature and/or flux data is ill-posed and inherently sensitive to errors in the data. Despite these difficulties, the inverse problem can be readily solved using a least-squares determination of polynomial coefficients based on a generalized direct solution to the Heat Equation. Once the unknown surface temperature history is determined, the resulting polynomial can also used with the generalized direct solution to determine the temperature and stress distributions as a function of time. For a semi-infinite slab with both edge- and surface-cracks, excellent agreement was seen with known solutions when this method was employed. Given the versatility of the polynomial solutions advocated, the method appears well suited for many thermal scenarios provided the analysis is restricted to the time interval used to determine the polynomial and the thermophysical properties that do not vary with temperature. The method can also be implemented as part of a finite-element solution for more complex geometries when closed-form solutions do not exist.
机译:对组件的常见威胁是工作稳态或瞬态热态引起的热冲击;对此类问题的分析最终需要确定应力强度因子(SIF)。对于所有边界条件都已知的直接问题,此过程相对简单且在数学上易于处理。尽管从测量的角度来看更实用,但是必须根据远程确定的温度和/或通量数据确定边界条件的反问题是不恰当的,并且固有地对数据中的错误敏感。尽管存在这些困难,但是基于热方程的广义直接解,可以使用多项式系数的最小二乘法确定来轻松解决反问题。一旦确定了未知的表面温度历史记录,所得的多项式也可以与广义直接解一起使用,以确定温度和应力分布随时间的变化。对于同时具有边缘裂纹和表面裂纹的半无限平板,当采用这种方法时,与已知解决方案的一致性很好。考虑到所提倡的多项式解决方案的多功能性,该方法似乎非常适合许多热场景,前提是分析仅限于确定多项式的时间间隔和不随温度变化的热物理性质。当不存在封闭形式的解决方案时,该方法还可以实现为用于更复杂几何形状的有限元解决方案的一部分。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2011年第3期|p.625-629|共5页
  • 作者

    A.E. Segall; J. Meeker;

  • 作者单位

    Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 7 6802, United States;

    Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 7 6802, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:44:33

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号