首页> 外文期刊>Nuclear Engineering and Design >Thermal hydraulic investigations on porous blockage in a prototype sodium cooled fast reactor fuel pin bundle
【24h】

Thermal hydraulic investigations on porous blockage in a prototype sodium cooled fast reactor fuel pin bundle

机译:钠冷却快堆燃料棒束原型中多孔堵塞的热力水力研究

获取原文
获取原文并翻译 | 示例
       

摘要

Thermal hydraulic characteristics of sodium flow in a prototype fuel subassembly with porous internal blockage have been investigated by computational fluid dynamics (CFD) simulations. CFD solutions for a subassembly having 217 pin bundle with seven helical pitch length were obtained by parallel processing. The CFD model has been validated against benchmark blockage experiment reported in literature. Wide parametric ranges for blockage radius, porosity, mean particle diameter and location of blockage have been considered. Critical length of blockage that would result in local sodium boiling as a function of aforementioned blockage parameters has been estimated and the parametric zone posing risk of sodium boiling has been identified. Attention has been paid to coolant mixing and flow and temperature fields downstream of the blockage zone. It is seen that for a prototype subassembly with various sections contributing to pressure loss, the total flow reduction is <2.5% for all blockages that can lead to local sodium boiling. This suggests, that global bulk sodium temperature monitoring at subassembly outlet is unlikely to detect slowly growing blockages. Comparing the sodium flow and temperature fields in unblocked and blocked bundles, it is found that the wake-induced temperature non-uniformity persist even upto 3 helical pitch length, highlighting that the sodium temperature non-uniformity at the bundle exit can serve as an efficient blockage indicator, provided that the cross-section temperature is mapped by a proper instrumentation. The peak clad temperature is found to be a strong function of porosity, with enhanced clad temperature for smaller porosity. Fuel-clad that are partly exposed to blockage are subjected to large circumferential temperature variation and the resulting huge thermal stress. Further, for a six subchannel blockage with 40% porosity and 0.5 mm mean particle diameter the critical length is 80 mm, whereas for the same blockage the critical length reduces to <7 mm when its porosity reduces to 5%. Six subchannel blockage with 60% porosity and 0.5 mm mean particle diameter, does not induce boiling even up to a blockage height of 400 mm. For a single subchannel blockage with one helical pitch length, there is no risk of sodium boiling even for porosity as low as 5%. The results of the present study would act as safety and monitoring criteria during the operation of the reactor. (C) 2016 Elsevier B.V. All rights reserved.
机译:通过计算流体动力学(CFD)模拟研究了具有多孔内部堵塞的原型燃料组件中钠流的热流水力特性。通过并行处理,获得了具有217针束且螺旋间距为7的子组件的CFD解决方案。 CFD模型已针对文献报道的基准阻塞实验进行了验证。已经考虑了堵塞半径,孔隙率,平均粒径和堵塞位置的宽参数范围。已经估计了根据上述堵塞参数将导致局部钠沸腾的临界堵塞长度​​,并且已经确定了造成钠沸腾风险的参数区。注意了堵塞区域下游的冷却液混合以及流场和温度场。可以看出,对于具有造成压力损失的各个部分的原型子组件,对于所有可能导致局部钠沸腾的堵塞,总流量减少量<2.5%。这表明,对组件出口处的整体钠钠温度进行全局监视不太可能检测到缓慢增长的堵塞。比较未阻塞和阻塞的束中的钠流场和温度场,发现唤醒引起的温度不均匀性甚至会持续到3个螺旋节距长度,这表明束出口处的钠温度不均匀性可以有效堵塞指示器,前提是截面温度是通过适当的仪器绘制的。发现峰值包层温度是孔隙率的强函数,对于较小的孔隙率,包层温度升高。部分暴露于堵塞状态的燃油包套会承受较大的周向温度变化,并产生巨大的热应力。此外,对于具有40%孔隙率和0.5 mm平均粒径的六个子通道阻塞,临界长度为80 mm,而对于相同的阻塞,当其孔隙率降低至5%时,临界长度减小至<7 mm。六个具有60%孔隙率和0.5毫米平均直径的子通道堵塞,即使堵塞高度达到400毫米,也不会引起沸腾。对于具有一个螺旋螺距长度的单个子通道堵塞,即使孔隙率低至5%,也没有钠沸腾的风险。本研究的结果将作为反应堆运行期间的安全和监测标准。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2016年第7期|88-108|共21页
  • 作者单位

    Indira Gandhi Ctr Atom Res, Thermal Hydraul Sect, Kalpakkam 603102, Tamil Nadu, India;

    Indira Gandhi Ctr Atom Res, Thermal Hydraul Sect, Kalpakkam 603102, Tamil Nadu, India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:41:52

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号