首页> 外文期刊>Nonlinear Differential Equations and Applications NoDEA >On the existence and uniqueness of minimizers for a class of integral functionals
【24h】

On the existence and uniqueness of minimizers for a class of integral functionals

机译:一类积分泛函的极小子的存在性与唯一性

获取原文
获取原文并翻译 | 示例

摘要

We study the solvability of the minimization problem $$mathop {min }limits_{eta in mathcal{K}_alpha } int_0^T {alpha (t)left[ {fleft( {|eta '(t)|} right) + gleft( {eta (t)} right)} right]} ,dt,$$ where $mathcal{K}_alpha $ is a subset of AC loc[0, T] depending on the weight function α. Neither the convexity nor the superlinearity of f are required. The main application concerns the existence and uniqueness of minimizers to integral functionals on convex domains $Omega subset mathbb{R}^N ,$ defined in the class of functions in $W_0 ^{1,1} left( Omega right)$ depending only on the distance from the boundary of Ω. As a corollary, when Ω is a ball we obtain the existence of radially symmetric solutions to nonconvex and noncoercive functionals.
机译:我们研究最小化问题的可解性$$ mathop {min} limits_ {eta在mathcal {K} _alpha} int_0 ^ T {alpha(t)left [{fleft({| eta'(t)|} right)+ gleft ({eta(t)}右}}右]},dt,$$其中$ mathcal {K} _alpha $是AC loc [0,T]的子集,具体取决于权重函数α。 f的凸性和超线性都不需要。主要应用涉及凸域$ Omega子集mathbb {R} ^ N,$中在函数类中$ W_0 ^ {1,1}左(Omega右)$中定义的最小化函数对积分函数的存在性和唯一性。在距Ω边界的距离上。作为推论,当Ω是一个球时,我们得到非凸和非矫顽功能的径向对称解的存在。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号