首页> 外文期刊>Nonlinear Differential Equations and Applications NoDEA >On the partial differential equations of electrostatic MEMS devices II: Dynamic case
【24h】

On the partial differential equations of electrostatic MEMS devices II: Dynamic case

机译:关于静电MEMS器件的偏微分方程II:动态情况

获取原文
获取原文并翻译 | 示例

摘要

This paper is a continuation of [9], where we analyzed steady-states of the nonlinear parabolic problem $u_{t} = triangle u - frac{lambda f(x)}{(1+u)^{2}}$ on a bounded domain Ω of ${mathbb{R}}^{N}$ with Dirichlet boundary conditions. This equation models a simple electrostatic Micro-Electromechanical System (MEMS) device consisting of a thin dielectric elastic membrane with boundary supported at 0 above a rigid ground plate located at –1. Here u is modeled to describe dynamic deflection of the elastic membrane. When a voltage–represented here by λ– is applied, the membrane deflects towards the ground plate and a snap-through (touchdown) may occur when it exceeds a certain critical value λ* (pull-in voltage), creating a so-called “pull-in instability” which greatly affects the design of many devices. In an effort to achieve better MEMS designs, the material properties of the membrane can be technologically fabricated with a spatially varying dielectric permittivity profile f(x). We show that when ${rm lambda} leq {rm lambda}^{*}$ the membrane globally converges to its unique maximal steady-state. On the other hand, if λ > λ* the membrane must touchdown at finite time T, and that touchdown cannot occur at a location where the permittivity profile vanishes. We establish upper and lower bounds on first touchdown times, and we analyze their dependence on f, λ and Ω by applying various analytical and numerical techniques. A refined description of MEMS touchdown profiles is given in a companion paper [10].
机译:本文是[9]的继续,在此我们分析了非线性抛物线问题$ u_ {t} =三角形u-frac {lambda f(x)} {(1 + u)^ {2}} $的稳态在具有Dirichlet边界条件的$ {mathbb {R}} ^ {N} $的有界域Ω上。该方程式对简单的静电微机电系统(MEMS)装置进行建模,该装置由薄的介电弹性膜组成,其边界支撑在位于–1的刚性接地板上上方的0。在这里,u被建模为描述弹性膜的动态挠度。当施加电压(此处用λ表示)时,膜偏向接地板,并且当其超过某个临界值λ*(上拉电压)时,可能会发生击穿(触地),形成所谓的“上拉不稳定性”极大地影响了许多器件的设计。为了实现更好的MEMS设计,可以通过在空间上改变介电常数曲线f(x)来制造膜的材料特性。我们显示,当$ {rm lambda} leq {rm lambda} ^ {*} $时,膜将全局收敛到其唯一的最大稳态。另一方面,如果λ>λ*,则膜必须在有限的时间T着陆,并且该着陆不能发生在介电常数分布消失的位置。我们确定第一次触地时间的上限和下限,并通过应用各种分析和数值技术分析它们对f,λ和Ω的依赖性。随附论文[10]中给出了MEMS触地曲线的详细描述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号