首页> 外文期刊>Nonlinear Differential Equations and Applications NoDEA >Lax–Hopf formula and Max-Plus properties of solutions to Hamilton–Jacobi equations
【24h】

Lax–Hopf formula and Max-Plus properties of solutions to Hamilton–Jacobi equations

机译:Lax–Hopf公式和Hamilton–Jacobi方程解的Max-Plus性质

获取原文
获取原文并翻译 | 示例

摘要

We state and prove a “Lax–Hopf formula” characterizing viable capture basins of targets investigated in viability theory and derive a “Max-Plus” morphism of capture basins with respect to the target. Capture basins are used to define “viability solutions” to Hamilton–Jacobi equations satisfying “trajectory conditions” (initial, boundary or Lagrangian conditions). The Max-Plus morphism property of Lax–Hopf formula implies the fact that the solution associated with inf-convolution of trajectory conditions is the inf-convolution of the solutions for each trajectory condition. For instance, Lipschitz regularization or decreasing envelopes of trajectory condition imply the Lipschitz regulation or decreasing envelopes of the solutions.
机译:我们陈述并证明了用生存力理论研究的,目标可行的捕获盆地的“ Lax-Hopf公式”,并得出了相对于目标的捕获盆地的“ Max-Plus”形态。捕获盆地用于为满足“轨迹条件”(初始,边界或拉格朗日条件)的汉密尔顿-雅各比方程式定义“生存力解”。 Lax–Hopf公式的Max-Plus态态性质暗示着这样的事实,即与轨迹条件的inf卷积相关的解是每个轨迹条件的解的inf卷积。例如,Lipschitz正则化或轨迹条件的包络减小意味着Lipschitz调节或解的包络减小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号