首页> 外文期刊>New Mathematics and Natural Computation >Approaches to Multi-Attribute Group Decision Making Based on Induced Interval-Valued Pythagorean Fuzzy Einstein Aggregation Operator
【24h】

Approaches to Multi-Attribute Group Decision Making Based on Induced Interval-Valued Pythagorean Fuzzy Einstein Aggregation Operator

机译:基于诱导间隔Pythagorean模糊爱因斯坦集合算子的多属性群决策方法

获取原文
获取原文并翻译 | 示例

摘要

Interval-valued Pythagorean fuzzy set is one of the successful extensions of the interval-valued intuitionistic fuzzy set for handling the uncertainties in the data. Under this environment, in this paper, we introduce the notion of induced interval-valued Pythagorean fuzzy Einstein ordered weighted averaging (I-IVPFEOWA) aggregation operator. Some of its desirable properties namely, idempotency, boundedness, commutatively, monotonicity have also been proved. The main advantage of using the proposed operator is that this operator gives a more complete view of the problem to the decision-makers. The method proposed in this paper provides more general, more accurate and precise results as compared to the existing methods. Therefore this method play a vital role in real world problems. Finally, we apply the proposed operator to deal with multi-attribute group decision- making problems under interval-valued Pythagorean fuzzy information. The approach has been illustrated with a numerical example from the field of the decision-making problems to show the validity, practicality and effectiveneSvS of the new approach.
机译:区间值勾股模糊集是区间值直觉模糊集的成功扩展之一,用于处理数据中的不确定性。在这种环境下,本文介绍了诱导间隔值勾股勾股模糊爱因斯坦有序加权平均(I-IVPFEOWA)聚合算子的概念。还证明了它的一些合乎需要的特性,即等幂性,有界性,可交换性,单调性。使用提议的运算符的主要优点是,该运算符可以使决策者更全面地了解问题。与现有方法相比,本文提出的方法可提供更通用,更准确和更精确的结果。因此,该方法在现实世界中的问题中起着至关重要的作用。最后,我们将提出的算子应用于区间值勾股模糊信息下的多属性群决策问题。通过决策问题领域的数值例子说明了该方法,以证明该方法的有效性,实用性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号