【24h】

Attractors In Song

机译:歌曲中的吸引人

获取原文
获取原文并翻译 | 示例

摘要

This paper summarizes our recent attempts to integrate action and perception within a single optimization framework. We start with a statistical formulation of Helmholtz's ideas about neural energy to furnish a model of perceptual inference and learning that can explain a remarkable range of neurobiological facts. Using constructs from statistical physics it can be shown that the problems of inferring the causes of our sensory inputs and learning regularities in the sensorium can be resolved using exactly the same principles. Furthermore, inference and learning can proceed in a biologically plausible fashion. The ensuing scheme rests on Empirical Bayes and hierarchical models of how sensory information is generated. The use of hierarchical models enables the brain to construct prior expectations in a dynamic and context-sensitive fashion. This scheme provides a principled way to understand many aspects of the brain's organization and responses. We will demonstrate the brain-like dynamics that this scheme entails by using models of birdsongs that are based on chaotic attractors with autonomous dynamics. This provides a nice example of how non-linear dynamics can be exploited by the brain to represent and predict dynamics in the environment.
机译:本文总结了我们最近在单一优化框架中整合动作和感知的尝试。我们从赫尔姆霍茨关于神经能量的思想的统计表述入手,以提供一种可以解释神经生物学事实范围广泛的知觉推断和学习模型。使用统计物理学的构造,可以证明,可以使用完全相同的原理来解决推断我们的感觉输入和学习感觉规律的问题。此外,推理和学习可以生物学上合理的方式进行。随后的方案基于经验贝叶斯和如何生成感官信息的层次模型。分层模型的使用使大脑能够以动态且上下文相关的方式构造先前的期望。该方案提供了一种了解大脑组织和反应的许多方面的原则方法。我们将通过使用基于具有自发动态的混沌吸引子的鸟鸣模型来演示此方案需要的类似大脑的动态。这提供了一个很好的例子,说明了大脑如何利用非线性动力学来表示和预测环境中的动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号