首页> 外文期刊>New Mathematics and Natural Computation >A COMPARATIVE STUDY OF BAYESIAN AND MAXIMUM LIKELIHOOD APPROACHES FOR ARCH MODELS WITH EVIDENCE FROM BRAZILIAN FINANCIAL SERIES
【24h】

A COMPARATIVE STUDY OF BAYESIAN AND MAXIMUM LIKELIHOOD APPROACHES FOR ARCH MODELS WITH EVIDENCE FROM BRAZILIAN FINANCIAL SERIES

机译:来自巴西金融系列证据的拱模型的贝叶斯和最大似然方法的比较研究

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this study is to address the inference problem of the parameters of autoregressive conditional heteroscedasticity (ARCH) models. Specifically, we present a comparison of the two approaches — Bayesian and Maximum Likelihood (ML) for ARCH models, and the specific mathematical and algorithmic formulations of these approaches. In the ML, estimation we obtain confidence intervals by using the Bootstrap simulation technique. In the Bayesian estimation, we present a reparametrization of the model which allows us to apply prior normal densities to the transformed parameters. The posterior estimates are obtained using Monte Carlo Markov Chain (MCMC) methods. The methodology is exemplified by considering two Brazilian financial time series: the Bovespa Stock Index — IBovespa and the Telebras series. The order of each ARCH model is selected by using the Bayesian Information Criterion (BIC).
机译:本研究的目的是解决自回归条件异方差(ARCH)模型参数的推理问题。具体来说,我们对ARCH模型的两种方法进行了比较-贝叶斯方法和最大似然法(ML),以及这些方法的特定数学和算法公式。在ML中,估计可以通过使用Bootstrap仿真技术获得置信区间。在贝叶斯估计中,我们提出了模型的重新参数化,这使我们可以将先前的法线密度应用于转换后的参数。后验估计是使用蒙特卡洛马尔可夫链(MCMC)方法获得的。通过考虑两个巴西财务时间序列来举例说明该方法,即Bovespa股票指数-IBovespa和Telebras系列。通过使用贝叶斯信息准则(BIC)选择每个ARCH模型的顺序。

著录项

  • 来源
    《New Mathematics and Natural Computation》 |2011年第2期|p.347-361|共15页
  • 作者单位

    Departamento de Matemdtica Aplicada e Estatistica Instituto de Ciencias Matematicas e de Computaqao — ICMC Universidade de Sao Paulo - USP Av. do Trabalhador Saocarlense 400, CEP 13566-590 Sao Carlos, Sao Paulo, Brazil;

    Campus de Tupd, Universidade Estadual Paulista — UNESP Av. Domingos da Costa Lopes 780, CEP 17602-660 Tupd, Sao Paulo, Brazil;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    ARCH models; bootstrap and MCMC methods; financial time series;

    机译:ARCH模型;引导程序和MCMC方法;财务时间序列;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号