首页> 外文期刊>Neurocomputing >Quality assessment methodology based on machine learning with small datasets: Industrial castings defects
【24h】

Quality assessment methodology based on machine learning with small datasets: Industrial castings defects

机译:基于小型数据集的机器学习的质量评估方法:工业铸件缺陷

获取原文
获取原文并翻译 | 示例

摘要

Nowadays there are numerous problems for which use of a multi-objective in image classification would be desirable although, unfortunately, the number of samples is too low. In these situations, higher level classifications could also work (for example, in surface defect detection, it is important to identify the defect, but it could also be useful to detect whether or not the object has a defect). To this end, we present a methodology called BoDoC which allows to improve this classification. To evaluate the methodology, we have created a new dataset, obtained from a foundry, to detect surface errors in casting pieces with 2 different defects: (i) inclusions, (ii) coldlaps and (iii) misruns. We also present a collection of techniques to select featu res from the images. We prove that our methodology improves the direct classification results in real world scenarios, with 91.305% precision. (c) 2021 Elsevier B.V. All rights reserved.
机译:如今存在许多问题,其中许多使用多目标在图像分类中是可取的,但不幸的是,样品的数量太低。 在这些情况下,更高级别的分类也可以起作用(例如,在表面缺陷检测中,重要的是要识别缺陷,但它也可能是有用的,以检测物体是否具有缺陷)。 为此,我们提出了一种称为Bodoc的方法,它允许改善该分类。 为了评估方法,我们创建了从铸造厂获得的新数据集,以检测铸件中的表面误差,其中2种不同的缺陷:(i)夹杂物,(ii)冷轧和(iii)误判。 我们还提供了从图像中选择专辑的技术集合。 我们证明,我们的方法可以提高现实世界情景的直接分类结果,精度为91.305%。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号