首页> 外文期刊>Neurocomputing >A coarse-to-fine capsule network for fine-grained image categorization
【24h】

A coarse-to-fine capsule network for fine-grained image categorization

机译:用于细粒度图像分类的粗孔胶囊网络

获取原文
获取原文并翻译 | 示例

摘要

Fine-grained image categorization is challenging due to the subordinate categories within an entry-level category can only be distinguished by subtle discriminations. This necessitates localizing key (most dis-criminative) regions and extract domain-specific features alternately. Existing methods predominantly realize fine-grained categorization independently, while ignoring that representation learning and fore-ground localization can reinforce each other iteratively. Sharing the state-of-the-art performance of cap-sule encoding for abstract semantic representation, we formalize our pipeline as a coarse-to-fine capsule network (CTF-CapsNet). It consists of customized expert CapsNets arranged in each perception scale and region proposal networks (RPNs) between two adjacent scales. Their mutually motivated self-optimization can achieve increasingly specialized cross-utilization of object-level and component-level descriptions. The RPN zooms the areas to turn the attention to the most distinctive regions by concerning preceding informations learned by expert CapsNet for references, whilst a finer-scale model takes as feed an amplified attended patch from last scale. Overall, CTF-CapsNet is driven by three focal margin losses between label prediction and ground truth, and three regeneration losses between original input images/ feature maps and reconstructed images. Experiments demonstrate that without any prior knowledge or strongly-supervised supports (e.g., bounding-box/part annotations), CTF-CapsNet can deliver competitive categorization performance among state-of-the-arts, i.e., testing accuracy achieves 89.57%, 88.63%, 90.51%, and 91.53% on our hand-crafted rice growth image set and three public benchmarks, i.e., CUB Birds, Stanford Dogs, and Stanford Cars, respectively. (c) 2021 Elsevier B.V. All rights reserved.
机译:由于入门级别的从属类别,细粒度的图像分类是挑战,只能通过微妙的鉴别来区分。这需要定位密钥(大多数歧义)区域并交替提取特定域特征。现有方法主要实现独立地实现细粒度分类,同时忽略该表示学习和前地定位可以迭代地相互加强。分享用于抽象语义表示的CAP-Sule编码的最先进的性能,我们将管道形式形式形式为粗略胶囊网络(CTF-CapsNet)。它由定制的专家挂布组成,在两个相邻的尺度之间排列在每个感知比例和区域提案网络(RPN)中。它们相互激励的自我优化可以实现越来越普遍的物体级和组件级描述的交叉利用。 RPN通过关于专家CapsNet获取参考的前述信息,缩放了将注意力转向最独特的地区,而较好的尺度模型从上一刻度提取放大的出席补丁。总的来说,CTF-Capsnet在标签预测和地面真理之间的三个焦距损失,以及原始输入图像/特征映射和重建图像之间的三个再生损耗。实验表明,没有任何先验知识或强烈监督的支持(例如,边界盒/部分注释),CTF-Capsnet可以在最先进的情况下提供竞争分类性能,即测试精度达到89.57%,88.63%在我们手工制作的稻米生长图像集和三个公共基准,即幼鸽,斯坦福狗和斯坦福汽车,90.51%和91.53%。 (c)2021 elestvier b.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第7期|200-219|共20页
  • 作者单位

    China Agr Univ Coll Informat & Elect Engn Beijing 100083 Peoples R China|Minist Agr & Rural Affairs Key Lab Agr Informatizat Standardizat Beijing 100083 Peoples R China;

    Minist Agr & Rural Affairs Key Lab Agr Informatizat Standardizat Beijing 100083 Peoples R China;

    China Agr Univ Coll Sci Beijing 100083 Peoples R China;

    China Agr Univ Coll Informat & Elect Engn Beijing 100083 Peoples R China|Minist Agr & Rural Affairs Key Lab Agr Informatizat Standardizat Beijing 100083 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Capsule network (CapsNet); Fine-grained image classification; Coarse-to-fine attention; Increasingly specialized perception;

    机译:胶囊网络(Capsnet);细粒度的图像分类;粗略关注;越来越专业的感知;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号