首页> 外文期刊>Neurocomputing >Knowledge embedded GCN for skeleton-based two-person interaction recognition
【24h】

Knowledge embedded GCN for skeleton-based two-person interaction recognition

机译:知识嵌入式GCN用于基于骨架的双人交互识别

获取原文
获取原文并翻译 | 示例

摘要

Two-person interaction recognition with skeleton data has attracted much attention in computer vision. Recently, graph convolutional network (GCN) based methods, which model the skeleton data in the form of graph, have achieved remarkable performance. However, the topology of graph in existing methods, denoted as naturally connected graph, is predefined based on the natural connection of each person. It ignores the correlations between two persons and cannot be suitable for different actions. In this paper, we design two graphs by exploiting the knowledge for two-person interaction recognition. A knowledge given graph is constructed to build the direct connection between two persons. Meanwhile, a knowledge learned graph is proposed to build the adaptive correlations, which is unique for each input sample. Moreover, we further propose the knowledge embedded graph convolution network (K-GCN) to exploit the complementarity among knowledge-given, knowledge-learned and naturally connected graphs for two-person interaction recognition. In addition, multi-level scheme is proposed to model the joint level and part-level information simultaneously, which further enhances the performance. To verify the effectiveness of the proposed method, consecutive ablation studies are performed on two prevalence datasets, SBU and NTU Interaction. Experimental results show that our method achieves the state-of-theart performance for two-person interaction recognition on both of them.& nbsp; (C)& nbsp;2020 Published by Elsevier B.V.
机译:双人交互识别与骨架数据引起了计算机视觉中的很多关注。最近,基于图表卷积网络(GCN)的方法,其模拟了图形形式的骨架数据,实现了显着的性能。然而,基于每个人的自然连接,预定义现有方法的图表中的图表的拓扑。它忽略了两个人之间的相关性,不能适合不同的行动。在本文中,我们通过利用两个人交互识别的知识来设计两个图。构建给定图形的知识以构建两个人之间的直接连接。同时,提出了一种知识学习图以构建自适应相关性,这对于每个输入样本是唯一的。此外,我们进一步提出了知识嵌入式图卷积网络(K-GCN)来利用了对双人交互识别的知识给定的,知识和自然连接的图表之间的互补性。此外,提出了多级方案以同时模拟联合水平和部分级信息,进一步提高了性能。为了验证所提出的方法的有效性,在两个流行数据集,SBU和NTU交互上进行连续消融研究。实验结果表明,我们的方法实现了两人交互识别的最终性能。  (c)  2020由elsevier b.v发布。

著录项

  • 来源
    《Neurocomputing》 |2021年第15期|338-348|共11页
  • 作者单位

    Xidian Univ Sch Atificial Intelligence Xian 710071 Shaanxi Peoples R China;

    Xidian Univ Sch Atificial Intelligence Xian 710071 Shaanxi Peoples R China;

    Xidian Univ Sch Atificial Intelligence Xian 710071 Shaanxi Peoples R China;

    Xidian Univ Sch Atificial Intelligence Xian 710071 Shaanxi Peoples R China;

    Xidian Univ Sch Atificial Intelligence Xian 710071 Shaanxi Peoples R China;

    Xidian Univ Sch Atificial Intelligence Xian 710071 Shaanxi Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Two-person interaction recognition; Graph convolutional network (GCN); Knowledge; Skeleton;

    机译:双人交互识别;图卷积网络(GCN);知识;骨架;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号