首页> 外文期刊>Neurocomputing >RFRN: A recurrent feature refinement network for accurate and efficient scene text detection
【24h】

RFRN: A recurrent feature refinement network for accurate and efficient scene text detection

机译:RFRN:一种复发特征精制网络,用于准确高效的场景文本检测

获取原文
获取原文并翻译 | 示例

摘要

Scene text detection plays a vital role for scene text understanding, but arbitrary-shaped text detection remains a significant challenge. To extract discriminative features, most recent state-of-the-art methods adopt heavy networks, resulting in parameter redundancy and inference inefficiency. For accurate and efficient scene text detection, in this paper we propose a novel recurrent feature refinement network (RFRN). RFRN, as a recurrent segmentation framework, contains a recurrent path augmentation that refines the previous feature maps as inner states, which not only helps improve the segmentation quality, but also fully facilitates the reuse of parameters and low computational cost. During testing, RFRN discards redundant prediction procedures for efficient inference, and achieves a good balance between speed and accuracy of inference. We conduct experiments on four challenging scene text benchmarks, CTW1500, Total-Text, ICDAR2015 and ICDAR2017-MLT, which include curved texts and multi-oriented texts with complex background. The results show that the proposed RFRN achieves competitive performance on detection accuracy while maintaining computational efficiency.(c) 2020 Elsevier B.V. All rights reserved.
机译:场景文本检测对于场景文本理解起着至关重要的作用,但是任意形状的文本检测仍然是一个重大挑战。为了提取歧视特征,最近最先进的方法采用重网络,导致参数冗余和推理效率低下。为了准确和有效的场景文本检测,本文提出了一种新型复发特征细化网络(RFRN)。作为一种经常性分割框架,RFRN包含一个经常性的路径增强,其将先前的特征映射作为内部状态改进,这不仅有助于提高分割质量,而且还完全促进了参数的重用和低计算成本。在测试期间,RFRN丢弃冗余预测程序以获得有效推理,并在推理的速度和准确性之间实现良好的平衡。我们对四个具有挑战性的场景文本基准,CTW1500,总文,ICDAR2015和ICDAR2017-MLT进行实验,包括曲线文本和复杂背景的多面文本。结果表明,建议的RFRN在保持计算效率的同时实现了检测准确性的竞争性能。(c)2020 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第17期|465-481|共17页
  • 作者单位

    Beijing Univ Posts & Telecommun Sch Elect Engn Beijing Key Lab Work Safety & Intelligent Monitor Beijing 100876 Peoples R China;

    Beijing Univ Posts & Telecommun Sch Elect Engn Beijing Key Lab Work Safety & Intelligent Monitor Beijing 100876 Peoples R China;

    UCL Dept Stat Sci London WC1E 6BT England;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Scene text detection; Recurrent segmentation; Feature pyramid network; Feature refinement;

    机译:场景文本检测;复发分割;特征金字塔网络;特色细化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号