首页> 外文期刊>Neurocomputing >Incorporating sentimental trend into gated mechanism based transformer network for story ending generation
【24h】

Incorporating sentimental trend into gated mechanism based transformer network for story ending generation

机译:基于门控机构的变压器网络,将多种化机构的变压器网络结合在一起

获取原文
获取原文并翻译 | 示例

摘要

Story ending generation is a challenging and under-explored task, which aims at generating a coherent, reasonable, and logical story ending given a context. Previous studies mainly focus on utilizing the contextual information and commonsense knowledge to generate story endings. However, there are still some issues must be addressed in the story endings generation processing, such as sentimental consistency and interference from secondary information. In this paper, we propose a Gated Mechanism based Transformer Network (GMTF). The GMTF model utilizes the sentimental trend to make story ending generation more sentimentally consistent with the context. For a given story context, we utilize a sentiment analysis tool VADER to obtain the sentimental trend. Then, the sentimental information and contextual information are input jointly into the transformer network to capture the key clues. Furthermore, the gated mechanism is applied to filter irrelative information and the weights of attention layers for encoder and decoder are shared to make the most of the contextual clues. The experimental results on ROCStories dataset demonstrate that the proposed method achieves 27.03% on BLEU-1, 7.62% on BLEU-2, 1.71 on Grammar, and 1.31 on Logicality, respectively. Specifically, our model outperforms the state-of-the-art model IE+MSA by 0.23%, 0.22%, 1.78%, 5.64%, respectively and the Transformer model by 3.06%, 1.05%, 5.55%, 48.86%, respectively. Both automatic and manual evaluations show that our model can generate more reasonable and appropriate story endings compared with the related well-established approaches.(c) 2021 Elsevier B.V. All rights reserved.
机译:故事结束生成是一个挑战性和探讨的任务,其旨在给出一个相干,合理的,逻辑的故事,旨在给出一个上下文。以前的研究主要集中在利用上下文信息和顽强知识来产生故事结局。但是,仍有一些问题必须在故事结束生成处理中解决,例如感情一致性和来自次要信息的干扰。在本文中,我们提出了一种基于门控机制的变压器网络(GMTF)。 GMTF模型利用了感情趋势,使故事结束生成更加思考与上下文一致。对于给定的故事背景,我们利用了情绪分析工具Vader来获得多愁善感。然后,感情信息和上下文信息将共同输入到变压器网络中以捕获密钥线索。此外,应用于滤波器的机制以滤波滤波器信息,并且共享用于编码器和解码器的注意层的权重以使大多数上下文线索。陶气数据集的实验结果表明,所提出的方法分别在BLE-2,1.71的BLE-2,1.71上达到27.03%,分别对逻辑性的1.31。具体而言,我们的模型优于最先进的模型,即+ MSA,分别为0.23%,0.22%,1.78%,5.64%,分别为3.06%,1.05%,5.55%,48.86%。自动和手动评估均表明,与相关善良的方法相比,我们的模型可以产生更合理和适当的故事结局。(c)2021 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第17期|453-464|共12页
  • 作者单位

    Guangxi Univ Sch Elect Engn Nanning Guangxi Peoples R China;

    Guangxi Univ Sch Elect Engn Nanning Guangxi Peoples R China;

    Guangxi Univ Sch Elect Engn Nanning Guangxi Peoples R China|South China Univ Technol Sch Software Engn Guangzhou Peoples R China|South China Univ Technol Minist Educ Key Lab Big Data & Intelligent Robot Guangzhou Peoples R China;

    South China Univ Technol Sch Software Engn Guangzhou Peoples R China|South China Univ Technol Minist Educ Key Lab Big Data & Intelligent Robot Guangzhou Peoples R China;

    Guangxi Univ Sch Elect Engn Nanning Guangxi Peoples R China;

    Guangxi Arts Univ Gen Educ Dept Nanning Peoples R China;

    Hong Kong Polytech Univ Hung Hom Kowloon Hong Kong Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Story ending generation; Sentiment trend; Transformer; Gated mechanism;

    机译:故事结束生成;情绪趋势;变压器;门控机制;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号