首页> 外文期刊>Neurocomputing >Efficient similarity search on multidimensional space of biometric databases
【24h】

Efficient similarity search on multidimensional space of biometric databases

机译:高效类似性搜索生物识别数据库的多维空间

获取原文
获取原文并翻译 | 示例

摘要

The problem of pursuing the data items of a large database whose distances to a query item are the least is known as Similarity Search (Nearest Neighbor Search) problem. There exist various algorithms to address this problem. Some of the well known algorithms are i) exact algorithms ii) approximation algorithms and iii) randomized algorithms. This paper has made study only on exact and approximation algorithms because randomized algorithm produces approximate results with some probability. Recently, there are several approximation algorithms are proposed by the researchers because this type of algorithms minimizes the problem of Curse of Dimensionality.This paper mainly has two major sections. In first section, various methods under exact and approximation algorithms are discussed with regard to storage, preprocessing and query time. In the second section, efficient algorithms for similarity search suitable for certain physiological characteristics based biometric systems are considered. Biometric system has five main steps viz acquisition of Image, preprocessing, extraction of features, matching and making final decision. In this paper, indexing algorithms for similarity search suitable for iris trait based on different features are discussed in detail. Since the nature of features are distinct and different in biometric traits, there does not exist a universal (one unique) solution which can apply to all traits of biometric systems. Various performance measures like Penetration Rate and Hit Rate are used to determine the correct recognition rate with top best match (rank-1 accuracy). (c) 2020 Elsevier B.V. All rights reserved.
机译:追求对查询项的距离的大数据库数据项的问题最初是相似搜索(最近邻南搜索)问题。存在各种算法来解决这个问题。一些众所周知的算法是i)精确的算法II)近似算法和III)随机化算法。本文仅对精确和近似算法进行了研究,因为随机算法产生了一些概率的近似结果。最近,研究人员提出了几种近似算法,因为这种类型的算法最小化了维度的诅咒问题。本文主要有两个主要部分。在第一部分中,关于存储,预处理和查询时间讨论了精确和近似算法的各种方法。在第二部分中,考虑了适用于基于生物学系统的某些生理特性的相似性搜索的有效算法。生物识别系统有五个主要步骤VIZ采集图像,预处理,提取特征,匹配和最终决定。本文详细讨论了适用于基于不同特征的虹膜特征的相似性搜索的索引算法。由于特征的性质在生物识别性状中具有不同和不同,因此不存在可能适用于生物识别系统的所有特征的通用(一个独特的)解决方案。普及率和命中率等各种性能测量用于确定最佳匹配(秩-1精度)的正确识别率。 (c)2020 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号