首页> 外文期刊>Neurocomputing >A survey on generative adversarial network-based text-to-image synthesis
【24h】

A survey on generative adversarial network-based text-to-image synthesis

机译:基于生成的对抗网络文本到图像合成调查

获取原文
获取原文并翻译 | 示例

摘要

The task of text-to-image synthesis is a new challenge in the field of image synthesis. In the earlier research, the task of text-to-image synthesis is mainly to achieve the alignment of words and images by the way of retrieval based on the sentences or keywords. With the development of deep learning, especially the application of deep generative models in image synthesis, image synthesis achieves promising progress. The Generative adversarial networks (GANs) are one of the most significant generative models, and GANs have been successfully applied in computer vision, natural language processing and so on. In this paper, we review and summarize the recent research in GANs-based text-to-image synthesis, and provide a summary of the development of classic and advanced models. The input of the GANs-based text-to image synthesis is not only the general text description as earlier studies, also includes scene layout and dialog text. The typical structure of each categories is elaborated. The general text-based image synthesis is the most commonly in the text-to-image synthesis, and it is subdivided into three groups based on the improvements of text information utilization, network structure and output control conditions. Through the survey, the detailed and logical overview of the evolution of GANs-based text-to-image synthesis is presented. Finally, the challenged problems and the future development of text-to-image synthesis are discussed.(c) 2021 Elsevier B.V. All rights reserved.
机译:文本到图像合成的任务是图像合成领域的新挑战。在早期的研究中,文本到图像合成的任务主要是通过基于句子或关键字来实现单词和图像的对齐方式。随着深度学习的发展,特别是在图像合成中的深度生成模型的应用,图像合成实现了有前途的进展。生成的对抗网络(GANS)是最重要的生成模型之一,GAN已成功应用于计算机视觉,自然语言处理等。在本文中,我们审查并总结了最近的基于GAN的文本到图像综合的研究,并提供了经典和高级模型的发展摘要。基于GAN的文本到图像综合的输入不仅是常年研究的常规文本描述,还包括场景布局和对话框文本。阐述了每个类别的典型结构。基于常规的基于文本的图像合成是最常见的文本到图像合成中,并且基于文本信息利用,网络结构和输出控制条件的改进,将其细分为三组。通过该调查,提出了基于GAN的文本到图像合成演变的详细和逻辑概述。最后,讨论了挑战的问题和文本形式综合的未来发展。(c)2021 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号