首页> 外文期刊>Neurocomputing >Towards accurate estimation for visual object tracking with multi-hierarchy feature aggregation
【24h】

Towards accurate estimation for visual object tracking with multi-hierarchy feature aggregation

机译:使用多层次结构聚合的可视对象跟踪准确估计

获取原文
获取原文并翻译 | 示例

摘要

Many methods achieve the visual object tracking task with deep learning technologies. As the deep features of different levels contain various semantic information and functions, this paper presents a multi hierarchy feature aggregation approach to tackle the specific issues in the tracking task, which consists of two aspects. On one hand, this paper integrates the features captured by the offline and online classifiers at the score level, which constructs complementary roles of these classifiers to enhance the stability of classification. Besides, the proposed offline classifier is continuously optimized with different levels of features to reinforce classification constraints. On the other hand, we design a butterfly attention module to promote the capacity of multi-hierarchy feature aggregation in the regression network, which aims to fuse and strengthen the multi-scale features by attending to their spatial information. It can capture more spatial contexts by utilizing the self-attention mechanism during the fusion procedure, and preserve the hierarchy of the features during the strengthening process. Extensive experiments on four public data sets, i.e., VOT2018, OTB100, NFS and LaSOT datasets, demonstrate the effectiveness of the proposed methods.(c) 2021 Elsevier B.V. All rights reserved.
机译:许多方法实现了深度学习技术的视觉对象跟踪任务。由于不同级别的深度特征包含各种语义信息和功能,因此本文提出了一种多层次特征聚合方法来解决跟踪任务中的特定问题,包括两个方面。一方面,本文将脱机和在线分类器捕获的特征集成在分数级别,该功能构建了这些分类器的互补角色,以提高分类的稳定性。此外,所提出的离线分类器是用不同的特征级别连续优化,以加强分类约束。另一方面,我们设计蝴蝶注意力模块,以促进回归网络中的多层次特征聚合的能力,旨在通过参加空间信息来熔断和加强多尺度特征。它可以通过在融合过程中利用自我关注机制来捕获更多的空间上下文,并在加强过程期间保持特征的层次结构。在四个公共数据集中进行了广泛的实验,即VOT2018,OTB100,NFS和LASOT数据集,证明了所提出的方法的有效性。(c)2021 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第3期|252-264|共13页
  • 作者单位

    Hefei Univ Technol Hefei Peoples R China;

    Hefei Univ Technol Hefei Peoples R China|Hefei Univ Technol Minist Educ Key Lab Knowledge Engn Big Data Hefei Peoples R China;

    Hefei Univ Technol Hefei Peoples R China|Hefei Univ Technol Minist Educ Key Lab Knowledge Engn Big Data Hefei Peoples R China;

    Hefei Univ Technol Hefei Peoples R China|Hefei Univ Technol Minist Educ Key Lab Knowledge Engn Big Data Hefei Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Visual object tracking; Multi-hierarchy feature aggregation; Classification score fusion; Butterfly attention module;

    机译:Visual Object跟踪;多层次结构聚合;分类得分融合;蝴蝶注意模块;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号