首页> 外文期刊>Neurocomputing >Spatiotemporal non-negative projected convolutional network with bidirectional NMF and 3DCNN for remaining useful life estimation of bearings
【24h】

Spatiotemporal non-negative projected convolutional network with bidirectional NMF and 3DCNN for remaining useful life estimation of bearings

机译:具有双向NMF和3DCNN的时空非负投影卷积网络,用于剩余的轴承使用寿命估算

获取原文
获取原文并翻译 | 示例

摘要

Remaining useful life (RUL) estimation for bearings is crucial in guaranteeing the reliability of rotating machinery. With the rapid development of information science, deep-learning-based RUL estimation has become more appealing as it can automatically establish the mapping relationship between the monitored data and the degradation states through feature learning. Vibration analysis via time & ndash;frequency representation (TFR) has shown great advantages for the detection of bearing damage in deep learning-based prognostics. However, the following two problems remain: 1) insufficient or ineffective utilization of the data feature information, and 2) the requirement for huge computational resources, which still present challenges for the accuracy and efficiency of TFR-based prognostics. A novel RUL estimation approach called spatiotemporal non-negative projected convolutional network (SNPCN) is hence proposed. The approach can fully learn the spatiotemporal degradation features of bearing TFRs with high computational efficiency. In detail, the continuous wavelet transform (CWT) was applied as a TFR analysis method to reveal the nonstationary properties of the bearing degradation signals. Then, a newly proposed bidirectional non-negative matrix factorization (BiNMF) method was used to obtain the low-rank eigenmatrices of the TFRs and greatly compress the calculations in TFR-based prognostics. A threedimensional convolutional neural network (3DCNN) was next constructed to learn the spatiotemporal degradation features in adjacent BiNMF eigenmatrices and construct the mapping relationship between the bearing RUL and current monitored data. Experiments on the PRONOSTIA platform demonstrate the feasibility and superiority of the proposed SNPCN-based bearing RUL estimation approach.(c) 2021 Elsevier B.V. All rights reserved.
机译:剩余的使用寿命(RUL)轴承估计对于保证旋转机械的可靠性至关重要。随着信息科学的快速发展,基于深度学习的RUL估计变得更加吸引力,因为它可以通过特征学习自动建立受监控数据和劣化状态之间的映射关系。通过时间和ndash振动分析;频率表示(TFR)对检测到深度学习的预测中的轴承损坏表示了很大的优势。然而,以下两个问题仍然存在:1)数据特征信息利用不足或无效,2)巨大计算资源的要求,这仍然对基于TFR的预测性的准确性和效率呈现挑战。因此,提出了一种名为Spatiotemporal非负投影卷积网络(SNPCN)的新型RUL估计方法。该方法可以通过高计算效率充分了解轴承TFR的时空降解特征。详细地,将连续小波变换(CWT)作为TFR分析方法施加,以揭示轴承劣化信号的非间断性质。然后,使用新提出的双向非负矩阵分解(BinMF)方法来获得TFR的低秩特征,并且大大压缩了基于TFR的预后性的计算。接下来构建三维卷积神经网络(3DCNN)以学习相邻的BinMF特征分流中的时空降解特征,并构造轴承RUL与电流监测数据之间的映射关系。 Ponostia平台上的实验证明了所提出的基于SNPCN的轴承RUL估计方法的可行性和优越性。(c)2021 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号