首页> 外文期刊>Neurocomputing >Knowledge Graph enhanced Neural Collaborative Filtering with Residual Recurrent Network
【24h】

Knowledge Graph enhanced Neural Collaborative Filtering with Residual Recurrent Network

机译:知识图增强了具有剩余反复网络的神经协作滤波

获取原文
获取原文并翻译 | 示例

摘要

Knowledge Graph (KG), which commonly consists of fruitful connected facts about items, presents an unprecedented opportunity to alleviate the sparsity problem in recommender system. However, existing KG based recommendation methods mainly rely on handcrafted meta-path features or simple triple-level entity embedding, which cannot automatically capture entities' long-term relational dependencies for the recommendation. Specially, entity embedding learning is not properly designed to combine user item interaction information with KG context information. In this paper, a two-channel neural interaction method named Knowledge Graph enhanced Neural Collaborative Filtering with Residual Recurrent Network (KGNCF-RRN) is proposed, which leverages both long-term relational dependencies KG context and user-item interaction for recommendation. (1) For the KG context interaction channel, we propose Residual Recurrent Network (RRN) to construct context-based path embedding, which incorporates residual learning into traditional recurrent neural networks (RNNs) to efficiently encode the long-term relational dependencies of KG. The self-attention network is then applied to the path embedding to capture the polysemy of various user interaction behaviours. (2) For the user-item interaction channel, the user and item embeddings are fed into a newly designed two-dimensional interaction map. (3) Finally, above the two-channel neural interaction matrix, we employ a convolutional neural network to learn complex correlations between user and item. Extensive experimental results on three benchmark data sets show that our proposed approach outperforms existing state-of-the-art approaches for knowledge graph based recommendation. CO 2021 Published by Elsevier B.V.
机译:知识图(千克)通常由有关项目的富有成效的相关事实组成,提出了一个前所未有的机会,以减轻推荐系统中的稀疏问题。然而,现有的基于KG的推荐方法主要依赖于手工制作的元路径特征或简单的三级实体嵌入,这不能自动捕获实体的长期关系依赖关系。特别地,未正确地设计实体嵌入学习以将用户项目交互信息与kg上下文信息组合。在本文中,提出了一种名为知识图的双通道神经交互方法,提出了具有剩余反复网络(KGNCF-RRN)的神经协作滤波,从而利用了长期关系依赖性kg上下文和用户项交互来推荐。 (1)对于KG上下文交互信道,我们提出了剩余的复发网络(RRN)来构建基于上下文的路径嵌入,该路径嵌入将残差学习纳入传统的经常性神经网络(RNN),以有效地编码KG的长期关系依赖性。然后将自我注意网络应用于嵌入的路径嵌入以捕获各种用户交互行为的多义。 (2)对于用户项交互通道,用户和项目嵌入式被馈送到新设计的二维交互映射。 (3)最后,在双通道神经交互矩阵之上,我们采用卷积神经网络来学习用户和项目之间的复杂相关性。三个基准数据集的广泛实验结果表明,我们所提出的方法优于基于知识图形的知识图形的现有最先进的方法。 CO 2021由Elsevier B.V发布。

著录项

  • 来源
    《Neurocomputing》 |2021年第24期|417-429|共13页
  • 作者单位

    Anhui Univ Sch Comp Sci & Technol Hefei 230000 Anhui Peoples R China|Univ Technol Sydney Fac Engn & Informat Technol Sydney NSW 2007 Australia|Hefei Univ Technol Sch Comp Sci & Informat Engn Hefei 230009 Peoples R China;

    Univ Technol Sydney Fac Engn & Informat Technol Sydney NSW 2007 Australia;

    Chinese Acad Sci Inst Automat Beijing 100190 Peoples R China;

    Hefei Univ Technol Sch Comp Sci & Informat Engn Hefei 230009 Peoples R China|Hefei Univ Technol Minist Educ Key Lab Knowledge Engn Big Data Hefei 230009 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Recommendation system; Knowledge Graph; Relational Path Embedding; Neural Collaborative Filtering; Residual Recurrent Network;

    机译:推荐系统;知识图;关系路径嵌入;神经协作过滤;残留的经常性网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号