首页> 外文期刊>Neurocomputing >MSEC: Multi-Scale Erasure and Confusion for fine-grained image classification
【24h】

MSEC: Multi-Scale Erasure and Confusion for fine-grained image classification

机译:MSEC:用于细粒度图像分类的多尺度擦除和混淆

获取原文
获取原文并翻译 | 示例

摘要

With the rapid development of deep learning, the performance of fine-grained image classification has experienced unprecedented improvement. However, for fine-grained image classification, quickly and effectively focusing on subtle discriminative details that make the sub-classes different from each other has always been challenging. In this paper, we propose a novel Multi-Scale Erasure and Confusion (MSEC) method to tackle the challenge of fine-grained image classification. Firstly, the input image is divided into several sub-regions, and the confidence scores of those sub-regions are calculated by the confidence function. The sub-regions with lower confidence scores are then erased by the Region Erasure Module (REM) and the erased image is confused once by the Multi-scale Region Confusion Module (Multi-scale RCM). Secondly, the sub-regions with higher confidence scores are divided and confused again by the Multi scale RCM, and then generate an image with multi-scale information. Finally, features in the erased image and the & ldquo;destructed & rdquo; image are extracted by the backbone network, and the whole network is optimized by the multi-loss function to realize classification tasks. Extensive experiments on three standard finegrained benchmark datasets, including Stanford Dogs, CUB-200-2011 and FGVC-Aircraft, show that MSEC can improve the accuracy of fine-grained image classification.(c) 2021 Elsevier B.V. All rights reserved.
机译:随着深度学习的快速发展,细粒度图像分类的性能经历了前所未有的改善。然而,对于细粒度的图像分类,快速有效地关注微妙的辨别细节,使得彼此不同的子类一直在具有挑战性。在本文中,我们提出了一种新的多尺度擦除和混淆(MSEC)方法来解决细粒度图像分类的挑战。首先,将输入图像分成几个子区域,并且通过置信功能计算这些子区域的置信区。然后,由区域擦除模块(REM)擦除具有较低置信区分的子区域,并且通过多尺度区域混淆模块(多尺度RCM)擦除擦除图像一次。其次,具有较高置信度分数的子区域被多尺度RCM划分并再次混淆,然后用多尺度信息生成图像。最后,在擦除图像和&ldquo中的特征;破坏性和rdquo;图像由骨干网提取,整个网络由多损耗函数进行优化以实现分类任务。广泛的三个标准Finegromated基准数据集,包括斯坦福狗,幼崽200-2011和FGVC-飞机,表明MSEC可以提高细粒度图像分类的准确性。(c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号