首页> 外文期刊>Neurocomputing >Automated assessment of Parkinsonian finger-tapping tests through a vision-based fine-grained classification model
【24h】

Automated assessment of Parkinsonian finger-tapping tests through a vision-based fine-grained classification model

机译:通过基于视觉的细粒度分类模型自动评估Parkinsonian手指攻丝试验

获取原文
获取原文并翻译 | 示例

摘要

Movement disorder of Parkinson & rsquo;s disease (PD) is usually quantified by the Movement Disorders Society sponsored Revision of the Unified Parkinson & rsquo;s Disease Rating Scale (MDS-UPDRS) to evaluate its severity. However, the lack of well-trained experts and subjective inter-rater variability often limit an effective and objective assessment in clinical practice. Hence, developing an automated assessment method for movement disorders in PD is crucial. Here, we present a novel vision-based fine-grained action recognition model to cope with one of the most critical and challenging tasks in clinical scales: the finger-tapping test. Specifically, we establish a three-stream fine-grained classification network with a Markov chain fusion model to aggregate multi-stream information of the skeleton sequence from finger-tapping test videos. Then, we develop a spatial & ndash;temporal attention mechanism to capture rich spatial and temporal long-range dependencies from skeleton data and introduce a symmetric bilinear pooling layer to enrich the local feature representation of each stream & rsquo;s output. Besides, a mini-batch-based balanced algorithm is designed to ensure that the samples in each mini-batch are inter-class balanced, thus mitigating the effect of imbalanced data on neural networks. Finally, our three-stream fine-grained classification network achieved an accuracy of 72.4% and an acceptable accuracy of 98.3% on 157 patients and 744 videos. Extensive experiments further confirm our approach & rsquo;s effectiveness and reliability. This method does not require any wearable device and has excellent potential for remote monitoring of PD patients in the future.(c) 2021 Elsevier B.V. All rights reserved.
机译:帕金森和rsquo的运动障碍(PD)通常由运动障碍社会量化,该社会赞助修改统一帕金森和rsquo; S疾病评级规模(MDS-UPDRS)来评估其严重程度。然而,缺乏训练有素的专家和主观帧间间变异性通常会限制临床实践中有效和客观的评估。因此,在PD中开发用于运动障碍的自动评估方法至关重要。在这里,我们提出了一种基于视觉的微粒的细粒度动作识别模型,以应对临床尺度中最关键和具有挑战性的任务之一:手指攻丝试验。具体地,我们建立三流细粒度分类网络,利用Markov链融合模型来聚合来自手指攻丝测试视频的骨架序列的多流信息。然后,我们开发了一种空间和ndash;时间注意机制从骨架数据捕获丰富的空间和时间远程依赖性,并引入对称双线性池池层,以丰富每个流和rsquo的本地特征表示。此外,设计了一种迷你批量的平衡算法,以确保每种迷你批处理中的样本都是阶级间平衡,从而减轻了对神经网络上不平衡数据的影响。最后,我们的三流细粒度分类网络达到了72.4%的准确性,可接受的准确性为157名患者和744个视频。广泛的实验进一步证实了我们的方法和rsquo; S的有效性和可靠性。该方法不需要任何可穿戴设备,并在未来对PD患者进行远程监测的优异潜力。(c)2021 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号