首页> 外文期刊>Neurocomputing >Dynamic proposal sampling for weakly supervised object detection
【24h】

Dynamic proposal sampling for weakly supervised object detection

机译:用于弱监督对象检测的动态提案抽样

获取原文
获取原文并翻译 | 示例

摘要

It is challenging to optimize object detectors with only image-level annotations because the target objects are often surrounded by a large number of background clutters. Many existing approaches tackle this problem through object proposal sampling. However, the collected positive proposals are either low in precision or lack of diversity, and the strategy of collecting negative proposals is not carefully designed, neither. In this context, the primary contribution of this work is to improve weakly supervised detection (WSD) with a dynamic proposal sampling (DPS) strategy. The proposed method collects purified positive training samples by progressively removing confident background clutters, and selects discriminative negative samples by mining class-specific hard proposals. To discover erratic number of confident proposals for different images and categories in varying training phase, we introduce class-specific probabilty accumulation score to measure the image complexity and the quality of learned object detectors, and adjust the number of sampled proposals accordingly. This proposal sampling procedure is integrated into a CNN-based WSD framework, and can be performed in each stochastic gradient descent mini-batch during training. Extensive evaluation results on PASCAL VOC 2007, VOC 2010 and VOC 2012 datasets are presented, which demonstrate that the proposed method effectively improves WSD.(c) 2021 Elsevier B.V. All rights reserved.
机译:利用图像级注释优化对象探测器是具有挑战性的,因为目标对象通常被大量的背景Clutters包围。许多现有方法通过对象提案抽样来解决这个问题。然而,收集的积极建议在精确或缺乏多样性的情况下较低,并且既不仔细设计收集否定建议的策略。在这种情况下,这项工作的主要贡献是通过动态提案采样(DPS)策略来改善弱监督检测(WSD)。所提出的方法收集,通过逐渐除去自信背景杂波纯化阳性训练样本,并选择由采矿类特定的硬提案判别阴性样品。要发现的不同的图像,并在不同的训练阶段类别自信提案不稳定的数目,我们引入类特定probabilty累积得分来测量图像的复杂性和学习对象检测器的质量,并相应地调整的采样提案数量。该提议采样过程被集成到基于CNN的WSD框架中,并且可以在训练期间在每个随机梯度下降迷你批处理中执行。在PASCAL VOC 2007年广泛的评估结果,VOC 2010年和2012 VOC数据集呈现,这表明,该方法有效地提高了WSD。版权所有(C)2021爱思唯尔B.V.所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号