首页> 外文期刊>Neurocomputing >Training very deep neural networks: Rethinking the role of skip connections
【24h】

Training very deep neural networks: Rethinking the role of skip connections

机译:培训非常深的神经网络:重新思考跳过连接的作用

获取原文
获取原文并翻译 | 示例

摘要

State-of-the-art deep neural networks (DNNs) typically consist of several layers of features representa-tions, and especially rely on skip connections to avoid the difficulty of model optimization. Despite the proliferation of different DNN models that employ various forms of skip connections to achieve remark-able results on benchmarking datasets, a concrete explanation for the successful operation and improved generalization capability of these DNNs is surprisingly still lacking. In this paper, we focus on investigat-ing the role of skip connections for training very deep DNNs. Our exposition directly provides interesting insights and new interpretations to the following important questions (i) why model optimization is easier (ii) why model generalization is better. Theoretical results reveal that skip connections allow DNNs to circumnavigate the singularity of latent representations that translate to optimization and gen-eralization problems, which plague models without skip connections referred to as PlainNets. For sub-stantiating our analysis, our investigation puts into context some of the most successful skip-connection based DNNs, which include residual networks (ResNets) and residual network with aggre-gated features (ResNeXt) in relation to PlainNets. Experimental evaluations of these models support the theoretical analysis.& nbsp; (c) 2021 Elsevier B.V. All rights reserved.
机译:最先进的深神经网络(DNN)通常由几个特征代表的层组成,特别是依赖跳过连接,以避免模型优化的难度。尽管采用不同形式的跳过连接的不同DNN模型的扩散来实现基准数据集的评论能力,但对于成功运行和改善这些DNN的泛化能力的具体解释令人惊讶地缺乏。在本文中,我们专注于调查跳过的训练非常深的角色的角色。我们的博览会直接向以下重要问题提供有趣的见解和新的解释(i)为什么模型优化更容易(ii)为什么模型泛化更好。理论结果表明,跳过连接允许DNN激活转化为优化和Gen-Eralization问题的潜在表示的奇异性,其中损失模型没有跳过连接被称为普通螺旋。对于分阶段进行分析,我们的调查进入上下文中的一些基于跳过的DNN的上下文,包括与Plainnets相关的剩余网络(Resnet)和剩余网络,其具有聚集功能(Resnext)。这些模型的实验评估支持理论分析。  (c)2021 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第21期|105-117|共13页
  • 作者单位

    Univ Luxembourg Interdisciplinary Ctr Secur Reliabil & Trust SnT L-1855 Luxembourg Luxembourg;

    Univ Luxembourg Interdisciplinary Ctr Secur Reliabil & Trust SnT L-1855 Luxembourg Luxembourg;

    Univ Luxembourg Interdisciplinary Ctr Secur Reliabil & Trust SnT L-1855 Luxembourg Luxembourg;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Deep neural network; Residual learning; Skip connection; Optimization;

    机译:深神经网络;剩余学习;跳过连接;优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号