首页> 外文期刊>Neurocomputing >Efficient attention based deep fusion CNN for smoke detection in fog environment
【24h】

Efficient attention based deep fusion CNN for smoke detection in fog environment

机译:基于雾环境中烟雾检测的基于深度融合CNN的高效关注

获取原文
获取原文并翻译 | 示例

摘要

Smoke detection based on video monitoring is of great importance for early fire warning. However, most of the smoke detection methods based on neural network only consider the normal weather. The harsh weather such as the fog environment is ignored. In this paper, we propose a smoke detection in normal and fog weather, which combines attention mechanism and feature-level and decision-level fusion module. First, a new fog smoke dataset with diverse positive and hard negative samples dataset is established through online collection and offline shooting. Then, an attention mechanism module combining spatial attention and channel attention is proposed to solve the problem of small smoke detection. Next, a lightweight feature-level and decision-level fusion module is proposed, which can not only improve the discrimination of smoke, fog and other similar objects, but also ensure the real-time performance of the model. Finally, a large number of comparative experiments on the existing dataset and our selfcreated dataset, show that our method can obtain higher detection accuracy rate, precision rate, recall rate, and F1 score from the perspective of overall, each category, small smoke and hard negative samples detection than the existing methods.(c) 2021 Elsevier B.V. All rights reserved.
机译:基于视频监测的烟雾检测对于早期火灾预警非常重要。然而,基于神经网络的大多数烟雾检测方法仅考虑正常的天气。雾化环境的恶劣天气被忽略。在本文中,我们提出了正常和雾天气中的烟雾检测,其结合了注意机制和特征级和决策级融合模块。首先,通过在线收集和离线射击建立具有多样化的正面和硬度样本数据集的新雾烟数据集。然后,提出了一种关注机构模块,组合空间关注和信道注意力来解决烟雾检测的问题。接下来,提出了一种轻型特征级和决策级融合模块,不仅可以改善烟雾,雾和其他类似物体的辨别,还可以确保模型的实时性能。最后,对现有数据集和我们自行的数据集进行了大量的比较实验,表明我们的方法可以获得更高的检测精度,精确率,召回率,以及从整体的角度来看,每个类别,小烟和硬否定样本检测比现有方法。(c)2021 Elsevier BV保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第28期|224-238|共15页
  • 作者单位

    Xi An Jiao Tong Univ Sch Informat & Commun Engn Key Lab Intelligent Networks & Network Secur Minist Educ Xian 710049 Peoples R China;

    Xi An Jiao Tong Univ Sch Informat & Commun Engn Key Lab Intelligent Networks & Network Secur Minist Educ Xian 710049 Peoples R China;

    Xi An Jiao Tong Univ Sch Informat & Commun Engn Key Lab Intelligent Networks & Network Secur Minist Educ Xian 710049 Peoples R China;

    Xinjiang Univ Coll Informat Sci & Engn Urumqi 830046 Peoples R China;

    Xi An Jiao Tong Univ Sch Informat & Commun Engn Key Lab Intelligent Networks & Network Secur Minist Educ Xian 710049 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Smoke detection; Fog environment; Attention mechanism; Feature-level and decision-level fusion;

    机译:烟雾检测;雾环境;注意机制;特征级和决策级融合;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号