首页> 外文期刊>Neurocomputing >Facial expression recognition with polynomial Legendre and partial connection MLP
【24h】

Facial expression recognition with polynomial Legendre and partial connection MLP

机译:与多项式图例和部分连接MLP的面部表情识别

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a partially connected Multilayer Perceptron (PCM) neural network as an optimal new MLP with a supervised algorithm and three hidden layers to detect face emotions. Compared with the traditional MLP, the proposed network shows improvements in speed, accuracy, and computational time. Six emotions have been considered in this study, namely anger, surprise, fear, sadness, normal, and happiness. The image dataset with the fixed background is used to test and train the network. Canny edge detection algorithm is employed to separate regions of the face including eyes, mouth, and eyebrows from the background. A binary image is extracted to represent the areas of eye, mouth, and eyebrow. The feature extraction is carried out by Legendre coefficients of Legendre polynomials which are selected for the best accuracy. Results show that the partial network is faster and has a lower computational complexity compared with the full connection network. It also has a faster convergence with higher accuracy.(c) 2020 Elsevier B.V. All rights reserved.
机译:本文介绍了一个部分连接的多层Perceptron(PCM)神经网络,作为具有监督算法的最佳新的MLP和三层,以检测面部情绪。与传统的MLP相比,所提出的网络显示出速度,准确性和计算时间的改善。在这项研究中考虑了六种情绪,即愤怒,惊喜,恐惧,悲伤,正常和幸福。具有固定背景的图像数据集用于测试和培训网络。罐内边缘检测算法用于从背景中分开包括眼睛,嘴巴和眉毛的面部的区域。提取二进制图像以表示眼睛,嘴巴和眉毛的区域。该特征提取由Legendre多项式的Legendre系数进行,所述传奇多项式的系数被选择为最佳精度。结果表明,与完整连接网络相比,部分网络更快且具有较低的计算复杂性。它还具有更高的融合,具有更高的准确性。(c)2020 Elsevier B.v.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号