首页> 外文期刊>Neurocomputing >Harvest shopping advice: Neural Question Generation from multiple information sources in E-commerce
【24h】

Harvest shopping advice: Neural Question Generation from multiple information sources in E-commerce

机译:收获购物建议:从电子商务中的多个信息来源生成神经问题

获取原文
获取原文并翻译 | 示例

摘要

The success of recent efforts in Question Generation (QG) has amazed scientists from academia and industry. In this paper, we explore to harvest shopping advice through a novel QG engine for e-commerce platforms. Unlike traditional QG methods conditioned on factual data, generating purchase-oriented questions depends on open-ended product properties and customer reviews. Besides, these questions should follow not only natural expressions but also user-interested aspects simultaneously. For this challenging task, an innovative generative adversarial net-based QG model is proposed - a generator featuring multi-source attention mechanism is employed to yield questions from multiple information sources; a discriminator featuring quality control is applied to fine-tune generated questions in terms of both language performance and aspect compatibility. We conduct extensive experiments on a new dataset comprised of Question-Review-Aspect-Property (Q-RAP) tuples from a real e-commerce site. Our experimental results demonstrate that the proposed approach achieves a significant superiority over seven state-of-the-art QG solutions. Meanwhile, this study indicates that customer reviews play a critical role in generating purchase-oriented questions, which confirms the validity of previous practices using buyer feedback to address natural language generation in e-commerce. (c) 2020 Elsevier B.V. All rights reserved.
机译:近期问题生成(QG)的成功取得了来自学术界和行业的惊人科学家。在本文中,我们探索通过新颖的QG发动机收获购物建议,用于电子商务平台。与传统的QG方法有关事实数据,产生面向采购的问题取决于开放式产品属性和客户评论。此外,这些问题不仅应遵循自然表达,还要同时使用用户感兴趣的方面。对于这项挑战性的任务,提出了一种创新的生成对抗基于基于净QG模型 - 一种具有多源注意机制的发电机,用于产生多种信息来源的问题;在语言性能和方面兼容性方面,在微调生成的问题上应用了质量控制的鉴别符。我们对来自真正的电子商务网站的问题审查 - 方面属性(Q-RAP)组成的新数据集进行了广泛的实验。我们的实验结果表明,该方法在七种最先进的QG解决方案中实现了显着的优势。同时,本研究表明客户评论在生成面向采购的问题方面发挥着关键作用,这证实了使用买家反馈来解决电子商务中的自然语言生成的先前做法的有效性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号