首页> 外文期刊>Neurocomputing >Multi-stage fault diagnosis framework for rolling bearing based on OHF Elman AdaBoost-Bagging algorithm
【24h】

Multi-stage fault diagnosis framework for rolling bearing based on OHF Elman AdaBoost-Bagging algorithm

机译:基于OHF Elman Adaboost-Bagging算法的滚动轴承多级故障诊断框架

获取原文
获取原文并翻译 | 示例

摘要

With the increasing complexity of industrial equipment, it is urgent to provide timely diagnosis and accurate evaluation to avoid failure. For rolling bearings, it is important to achieve the multi-stage (incipient, intermediate, late) fault diagnosis under random noise. Different from traditional methods, an Output Hidden Feedback Elman Adaptive Boosting-Bootstrap Aggregating algorithm is proposed under a comprehensive diagnosis framework. First, the original signal is decomposed, denoised and reconstructed by Ensemble Empirical Mode Decomposition. Then, OHF Elman neural network is designed by increasing a feedback from the output layer to the hidden layer based on Elman neural network. This improves the memory function for dynamic data of rolling bearings. Furthermore, for achieving diagnostic accuracy and algorithm stability, OHF Elman AdaBoost-Bagging algorithm is developed as a strong learner through the dual integration of AdaBoost algorithm and Bagging algorithm. Experimental results show that the proposed algorithm not only has a good diagnostic performance on different stages of rolling bearing faults, but also achieves higher generalization ability and stability. This multi-stage fault diagnosis framework provides a novel tool and an effective solution for rolling bearing fault diagnosis.(c) 2020 Published by Elsevier B.V.
机译:随着工业设备的复杂性越来越多,迫切需要及时诊断和准确评估,以避免失败。对于滚动轴承,重要的是在随机噪声下实现多阶段(初期,中间,晚期)故障诊断。与传统方法不同,在全面的诊断框架下提出了一种输出隐藏反馈ELMAN自适应升压引导集合算法。首先,通过集合经验模式分解,原始信号分解,去噪并重建。然后,OHF ELMAN神经网络是通过基于ELMAN神经网络的基于ELMAN神经网络的来自输出层的反馈来设计。这改善了用于滚动轴承的动态数据的存储器功能。此外,为了实现诊断准确性和算法稳定性,OHF Elman Adaboost-Bagging算法通过Adaboost算法和袋装算法的双重集成来开发为强学习者。实验结果表明,该算法在滚动轴承故障的不同阶段方面不仅具有良好的诊断性能,而且还实现了更高的泛化能力和稳定性。这种多级故障诊断框架提供了一种新型工具和用于滚动轴承故障诊断的有效解决方案。(c)2020由elestvier b.v发布。

著录项

  • 来源
    《Neurocomputing》 |2021年第14期|237-251|共15页
  • 作者单位

    Shanghai Jiao Tong Univ Sch Mech Engn SJTU Fraunhofer Ctr State Key Lab Mech Syst & Vibrat Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Sch Mech Engn SJTU Fraunhofer Ctr State Key Lab Mech Syst & Vibrat Shanghai 200240 Peoples R China;

    Donghua Univ Coll Mech Engn Shanghai 201620 Peoples R China;

    Shanghai Jiao Tong Univ Sch Mech Engn SJTU Fraunhofer Ctr State Key Lab Mech Syst & Vibrat Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Sch Mech Engn SJTU Fraunhofer Ctr State Key Lab Mech Syst & Vibrat Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Sch Mech Engn SJTU Fraunhofer Ctr State Key Lab Mech Syst & Vibrat Shanghai 200240 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Rolling bearing; OHF Elman AdaBoost-Bagging; Neural network; Multi-stage fault diagnosis;

    机译:滚动轴承;OHF Elman Adaboost-Bagging;神经网络;多级故障诊断;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号