首页> 外文期刊>Neurocomputing >Deep embedding clustering based on contractive autoencoder
【24h】

Deep embedding clustering based on contractive autoencoder

机译:基于对压缩自动化器的深嵌入聚类

获取原文
获取原文并翻译 | 示例

摘要

Clustering large and high-dimensional document data has got a great interest. However, current cluster ing algorithms lack efficient representation learning. Implementing deep learning techniques in document clustering can strengthen the learning processes. In this work, we simultaneously disentangle the problem of learned representation by preserving important information from the initial data while pushing the original samples and their augmentations together in one hand. Furthermore, we handle the cluster locality preservation issue by pushing neighboring data points together. To that end, we first introduce Contractive Autoencoders. Then we propose a deep embedding clustering framework based on contractive autoencoder (DECCA) to learn document representations. Furthermore, to grasp relevant document or word features, we append the Frobenius norm as penalty term to the conventional autoencoder framework, which helps the autoencoder to perform better. In this way, the contractive autoencoders apprehend the local manifold structure of the input data and compete with the representations learned by existing methods. Finally, we confirm the supremacy of our proposed algorithm over the state-of-the art results on six real-world images and text datasets.(c) 2021 Elsevier B.V. All rights reserved.
机译:聚类大型和高维文档数据具有很大的兴趣。然而,目前的聚类算法缺乏有效的代表学习。在文档聚类中实现深度学习技术可以加强学习过程。在这项工作中,我们同时解开了通过从初始数据中保留重要信息,同时在将原始样本及其一方面推动的同时保留重要信息。此外,我们通过将相邻数据点推在一起来处理群集位置保存问题。为此,我们首先介绍了收缩性的自动化器。然后,我们提出了一种基于对压缩AutoEncoder(Decca)的深度嵌入聚类框架来学习文档表示。此外,为了掌握相关文档或单词功能,我们将Frobenius标准作为惩罚术语附加到传统的AutoEncoder框架,这有助于AutoEncoder更好地执行。通过这种方式,对收缩性的自动统计学者逮捕了输入数据的局部歧管结构并与现有方法学习的表示竞争。最后,我们在六个真实世界图像和文本数据集上确认了我们所提出的算法的最高结果。(c)2021 Elsevier B.v.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号