首页> 外文期刊>Neurocomputing >LBAN-IL: A novel method of high discriminative representation for facial expression recognition
【24h】

LBAN-IL: A novel method of high discriminative representation for facial expression recognition

机译:LBAN-IL:面部表情识别的高鉴别表现的一种新方法

获取原文
获取原文并翻译 | 示例

摘要

Existing facial expression recognition (FER) works have achieved significant progress on constrained datasets. However, these methods only consider the sample distribution and achieve limited performance on unconstrained datasets. Facial expressions in the wild are influenced by various factors, e.g. illumination and partial occlusion, providing great challenge for model design and putting forward the higher requirement for feature discrimination. In this paper, we propose a novel LBAN-IL for FER in the wild, including local binary attention network (LBAN) and islets loss (IL). LBAN is based on two operations, local binary standard layer and encoder-decoder module. The former is derived from local binary convolution, so as to prevent excessive sparseness of feature maps and reduce the number of learnable parameters. The purpose of the latter is to generate attention-aware features and accurately discover local changes in the face. The proposed IL aims to enhance the discrimination of expression features by increasing the amplitude of vectors. Experimental results on RAF-DB, SFEW 2.0, FER-2013 and ExpW datasets validate the effectiveness of LBAN-IL and perform over some state-of-the-art methods.(c) 2020 Elsevier B.V. All rights reserved.
机译:现有的面部表情识别(FER)作品在约束数据集中取得了重大进展。但是,这些方法仅考虑样品分布并在无约束数据集中实现有限的性能。野生面部表情受到各种因素的影响,例如,照明和部分闭塞,为模型设计提供巨大挑战,提出了特征歧视的较高要求。在本文中,我们向野外的FER提出了一种新的LBAN-IL,包括局部二元关注网络(LBAN)和胰岛损失(IL)。 LBAN基于两个操作,本地二进制标准层和编码器 - 解码器模块。前者源自局部二进制卷积,以防止特征映射的过度稀疏性并减少可学习参数的数量。后者的目的是生成注意力感知功能,并准确发现面部的局部变化。所提出的IL目的是通过增加载体的幅度来增强表达特征的辨别。 RAF-DB,SFEW 2.0,FER-2013和EXPW数据集的实验结果验证了LBAN-IL的有效性,并在某些最先进的方法中进行。(c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第7期|159-169|共11页
  • 作者单位

    Xidian Univ Sch Telecommun Engn State Key Lab Intergrated Serv Networks Xian 710071 Shaanxi Peoples R China;

    Xidian Univ Sch Telecommun Engn State Key Lab Intergrated Serv Networks Xian 710071 Shaanxi Peoples R China;

    Natl Inst Informat Digital Content & Media Sci Res Div Tokyo Japan;

    Xidian Univ Sch Telecommun Engn State Key Lab Intergrated Serv Networks Xian 710071 Shaanxi Peoples R China;

    Chongqing Univ Posts & Telecommun Chongqing Key Lab Image Cognit Chongqing 400065 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Facial expression recognition; Local binary attention network; Islets loss; High discriminative representation;

    机译:面部表情识别;局部二元关注网络;胰岛损失;高鉴别表现;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号