首页> 外文期刊>Neurocomputing >MAPD: An improved multi-attribute pedestrian detection in a crowd
【24h】

MAPD: An improved multi-attribute pedestrian detection in a crowd

机译:MAPD:在人群中改进的多属性行人检测

获取原文
获取原文并翻译 | 示例

摘要

Recently, CNN (convolutional neural networks) based pedestrian detection has made significant progress, but pedestrian detection in a crowd is still a challenge. Pedestrians are close to each other in a crowd, which is difficult for discriminating individuals. To address this issue, we propose an improved Multi attribute pedestrian detection (MAPD) method, which coptimize person intra-class compactness and inter-class discrepancy. The contributions are fourfold: (1) We analyze the effect of positive setting on the detector and adopt a better positive settings strategy to mitigate extreme class imbalance problems. (2) Inspired by Person Reid, we employ the triplet loss function to learn the advanced id feature of pedestrians. (3) We propose a novel Piecewise NMS algorithm to reduce false positive of small objects. (4) We propose a novel multi-attribute NMS algorithm based on Piecewise NMS algorithm and id information, which can adaptively distinguish predicted boxes of different pedestrians and improve the detector performance. Finally, we evaluate the MAPD detector on two benchmark datasets, including CityPersons and CrowdHuman. Results show that our approach outperforms state-of-the-art methods with a big margin.(c) 2020 Elsevier B.V. All rights reserved.
机译:最近,基于CNN(卷积神经网络)的行人检测取得了重大进展,但人群中的行人检测仍然是一个挑战。行人在人群中彼此接近,这很难辨别个人。为了解决这个问题,我们提出了一种改进的多属性行人检测(MAPD)方法,它将课外紧凑性和阶级间差异共同化。贡献是四倍:(1)我们分析了积极设置对探测器的影响,采用更好的积极设置策略来缓解极端的不平衡问题。 (2)受到人的灵感,我们采用了三联损失函数来学习行人的高级ID特征。 (3)我们提出了一种新颖的分段NMS算法,以减少小物体的误报。 (4)我们提出了一种基于分段NMS算法和ID信息的新型多属性NMS算法,其可以自适应地区分不同行人的预测盒并提高检测器性能。最后,我们在两个基准数据集中评估MAPD探测器,包括CityPersonsonsonsonsonsonsonsonsonsonsonsonsonsonsonsonsonsonsonsonsonsonsonsonson。结果表明,我们的方法优于最先进的方法,具有大边缘。(c)2020 Elsevier B.v.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号