首页> 外文期刊>Neurocomputing >A novel fuzzy ARTMAP with area of influence
【24h】

A novel fuzzy ARTMAP with area of influence

机译:一种新型模糊艺术艺术艺术区

获取原文
获取原文并翻译 | 示例

摘要

Fuzzy ARTMAP (FAM) is a neural network model based on the adaptive resonance theory (ART). Its main advantage relies on its capability to successfully deal with the stability-plasticity dilemma. Even though FAM models have been used in many applications with remarkable performance, such model suffers from a well-known problem, named category proliferation, which results in the creation of a large number of categories in the training step. In that case, the FAM model may present lower generalization capability for unseen data. In this work, we aim to handle the category proliferation problem by proposing a new model that modifies the vigilance criterion and the weight update rule to pursue the generation of a sparse set of categories. Our model named FAM with Area of Influence (FAM-AI) is compared to the original FAM and some proposed variants. We perform several computational experiments and verify that, in general, the proposed FAM-AI achieves higher accuracy with a lower number of categories. (c) 2020 Elsevier B.V. All rights reserved.
机译:模糊艺术图(FAM)是基于自适应共振理论(ART)的神经网络模型。其主要优势依赖于其成功地处理稳定性可塑性困境的能力。尽管FAM模型已被用于具有显着性能的许多应用程序,但这种模型也遭受了一个众所周知的问题,命名为类别增殖,这导致在训练步骤中创建大量类别。在这种情况下,FAM模型可能为未经证明数据呈现较低的概括能力。在这项工作中,我们的目标是通过提出修改警惕标准的新模型和重量更新规则来处理类别的扩散问题,以追求生成稀疏类别的生成。我们的型号与影响范围(FAM-AI)命名为Fam(FAM-AI)与原始FAM和一些提出的变体进行比较。我们执行多个计算实验并验证,通常,拟议的FAM-AI以较低的类别实现更高的准确性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号