首页> 外文期刊>Neurocomputing >Robot recognizing humans intention and interacting with humans based on a multi-task model combining ST-GCN-LSTM model and YOLO model
【24h】

Robot recognizing humans intention and interacting with humans based on a multi-task model combining ST-GCN-LSTM model and YOLO model

机译:基于组合ST-GCN-LSTM模型和YOLO模型的多任务模型,机器人识别人类的意图并与人类互动

获取原文
获取原文并翻译 | 示例

摘要

It is hoped that the robot could interact with the human when the robots help us in our daily lives. And understanding humans' specific intention is the first crucial task for human-robot interaction. In this paper, we firstly develop a multi-task model for recognizing humans' intention, which is composed of two sub-tasks: human action recognition and hand-held object identification. For the front subtask, an effective ST-GCN-LSTM model is proposed by fusing the Spatial Temporal Graph Convolutional Networks and Long Short Term Memory Networks. And for the second subtask, the YOLO v3 model is adopted for the hand-held object identification. Then, we build a framework for robot interacting with the human. Finally, these proposed models and the interacting framework are verified on several datasets and the testing results show the effectiveness of the proposed models and the framework. (c) 2020 Elsevier B.V. All rights reserved.
机译:希望机器人可以在我们的日常生活中帮助我们时与人类互动。并理解人类的特定意图是人体机器人互动的第一个至关重要的任务。在本文中,我们首先开发了一个用于识别人类意图的多任务模型,由两个子任务组成:人类行动识别和手持对象识别。对于前次子任务,通过融合空间时间图卷积网络和长短短期存储网络来提出有效的ST-GCN-LSTM模型。对于第二个子任务,采用了yolo v3模型用于手持对象识别。然后,我们为与人类交互的机器人构建一个框架。最后,在多个数据集中验证了这些提出的模型和交互框架,测试结果显示了所提出的模型和框架的有效性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第21期|174-184|共11页
  • 作者单位

    Beijing Univ Technol Fac Informat & Technol Beijing Peoples R China;

    Beijing Univ Technol Fac Informat & Technol Beijing Peoples R China;

    Beijing Univ Technol Fac Informat & Technol Beijing Peoples R China;

    Beijing Univ Technol Fac Informat & Technol Beijing Peoples R China;

    Beijing Univ Technol Fac Informat & Technol Beijing Peoples R China;

    Beijing Univ Technol Fac Informat & Technol Beijing Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Human Intention Recognition; ST-GCN-LSTM; Human-Robot Interaction;

    机译:人类意图识别;ST-GCN-LSTM;人机互动;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号