首页> 外文期刊>Neurocomputing >Inference guided feature generation for generalized zero-shot learning
【24h】

Inference guided feature generation for generalized zero-shot learning

机译:推广引导特征生成广义零射击学习

获取原文
获取原文并翻译 | 示例

摘要

Generalized zero-shot learning suffers from an extreme data imbalance problem, that is, the training data only come from seen classes while no unseen class data are available. Recently, a number of feature generation methods based on generative adversarial networks (GAN) have been proposed to address this problem. Existing feature generation methods, however, have never considered the under-constrained problem, and thus could generate an unrestricted visual feature corresponding to no meaningful object class. In this paper, we propose to equip the feature generation framework with a parallel inference network that projects visual feature to the semantic descriptor space, constraining to avoid the generation of unrestricted visual features. The two-parallel-stream framework (1) enables our method, termed inference guided feature generation (Inf-FG), to mitigate the under-constrained problem and (2) makes our Inf-FG applicable to transductive ZSL. Our Inf-FG learns the feature generator and the inference network simultaneously by aligning the joint distribution of visual features and semantic descriptors from the feature generator and the joint distribution from the inference network. We evaluate our approach on four benchmark ZSL datasets, including AWA, CUB, SUN, and FLO, on which our method improves our baselines on generalized zero-shot learning. (c) 2020 Elsevier B.V. All rights reserved.
机译:广义零射击学习患有极端数据不平衡问题,即,训练数据仅来自所看到的类,而没有未使用的类数据。最近,已经提出了基于生成的对抗网络(GAN)的许多特征生成方法来解决这个问题。然而,现有特征生成方法从未考虑过受累的问题,因此可以生成与没有有意义的对象类相对应的不受限制的视觉功能。在本文中,我们建议用一个并行推理网络的特征生成框架,该网络将可视特征投影到语义描述符空间,约束为避免产生不受限制的视觉功能。双行流框架(1)启用我们的方法,称为推理引导特征生成(INF-FG),以减轻受限制的问题,并且(2)使我们的INF-FG适用于转导ZSL。我们的INF-FG通过将来自特征发生器的可视特征和语义描述符的联合分布和来自推理网络的接头分布对齐,同时学习特征发生器和推理网络。我们在四个基准ZSL数据集中评估我们的方法,包括AWA,Cub,Sun和Flo,我们的方法可以改善我们在广义零射击学习的基础上。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第21期|150-158|共9页
  • 作者单位

    Nanjing Univ Sci & Technol Sch Comp Sci & Engn Key Lab Intelligent Percept & Syst High Dimens In PCA Lab Minist Educ Nanjing 210094 Jiangsu Peoples R China|Nanjing Univ Sci & Technol Sch Comp Sci & Engn Jiangsu Key Lab Image & Video Understanding Socia Nanjing 210094 Jiangsu Peoples R China;

    Nanjing Univ Sci & Technol Sch Comp Sci & Engn Key Lab Intelligent Percept & Syst High Dimens In PCA Lab Minist Educ Nanjing 210094 Jiangsu Peoples R China|Nanjing Univ Sci & Technol Sch Comp Sci & Engn Jiangsu Key Lab Image & Video Understanding Socia Nanjing 210094 Jiangsu Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Feature generation; Generalized zero-shot learning; Image classification; Transfer learning;

    机译:特征生成;广义零射击学习;图像分类;转移学习;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号