首页> 外文期刊>Neurocomputing >A knowledge graph method for hazardous chemical management: Ontology design and entity identification
【24h】

A knowledge graph method for hazardous chemical management: Ontology design and entity identification

机译:危险化学品管理的知识图方法:本体设计与实体识别

获取原文
获取原文并翻译 | 示例

摘要

Hazardous chemicals are widely used in the production activities of the chemical industry. The risk management of hazardous chemicals is critical to the safety of life and property. Hence, the effective risk management of hazardous chemicals has always been important to the chemical industry. Since a large quantity of knowledge and information of hazardous chemicals is stored in isolated databases, it is challenging to manage hazardous chemicals in an information-rich manner. Herein, we prompt a knowledge graph to overcome the information gap between decentralized databases, which would improve the hazardous chemical management. In the implementation of the knowledge graph, we design an ontology schema of hazardous chemicals management. To facilitate enterprises to master the knowledge in the full lifecycle of hazardous chemicals, including production, transportation, storage, etc., we jointly use data from companies and open data from the public domain of hazardous chemicals to construct the knowledge graph. The named entity recognition task is one of the key tasks in the implementation of the knowledge graph, which is of great significance for extracting entity information from unstructured data, namely the hazardous chemical accidents records. To extract useful information from multi-source data, we adopt the pre-trained BERT-CRF model to conduct named entity recognition for incidents records. The model achieves good results, exhibiting the effectiveness in the task of named entity recognition in the chemical industry. (c) 2020 Elsevier B.V. All rights reserved.
机译:危险化学品广泛应用于化学工业的生产活动。危险化学品的风险管理对于生命和财产的安全至关重要。因此,危险化学品的有效风险管理始终对化学工业很重要。由于危险化学品的大量知识和信息储存在孤立的数据库中,因此以丰富的信息管理危险化学品是挑战性的。在此,我们提示知识图来克服分散数据库之间的信息差距,这将改善危险化学品管理。在执行知识图中,我们设计了危险化学品管理的本体模式。为了促进企业掌握危险化学品的完整生命周期中的知识,包括生产,运输,存储等,我们共同使用公司的数据和从危险化学品的公共领域开放数据来构建知识图表。命名实体识别任务是知识图中的关键任务之一,这对于从非结构化数据中提取实体信息具有重要意义,即危险化学事故记录。要从多源数据中提取有用信息,我们采用预先训练的BERT-CRF模型来对事件记录的命名实体识别进行命名实体识别。该模型达到了良好的效果,展示了化学工业中名为实体识别的任务的有效性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第21期|104-111|共8页
  • 作者单位

    East China Univ Sci & Technol Key Lab Adv Control & Optimizat Chem Proc Minist Educ Shanghai 200237 Peoples R China;

    East China Univ Sci & Technol Key Lab Adv Control & Optimizat Chem Proc Minist Educ Shanghai 200237 Peoples R China;

    East China Univ Sci & Technol Key Lab Adv Control & Optimizat Chem Proc Minist Educ Shanghai 200237 Peoples R China;

    East China Univ Sci & Technol Key Lab Adv Control & Optimizat Chem Proc Minist Educ Shanghai 200237 Peoples R China;

    East China Univ Sci & Technol Key Lab Adv Control & Optimizat Chem Proc Minist Educ Shanghai 200237 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Knowledge graph; Ontology; Hazardous chemicals management; Named entity recognition;

    机译:知识图;本体;危险化学品管理;命名实体识别;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号