首页> 外文期刊>Neurocomputing >Fault diagnosis with synchrosqueezing transform and optimized deep convolutional neural network: An application in modular multilevel converters
【24h】

Fault diagnosis with synchrosqueezing transform and optimized deep convolutional neural network: An application in modular multilevel converters

机译:故障诊断与同步变换变换和优化的深卷积神经网络:模块化多级转换器的应用

获取原文
获取原文并翻译 | 示例

摘要

High voltage direct current (HVDC) transmission mode with modular multilevel converters (MMC) topology is the future direction of transmission engineering, and security is their fundamental issue. Submodule fault of MMC in HVDC is the most common problem, nevertheless, traditional time-frequency based diagnosis technology can't achieve high accuracy. To solve this pain spot, a new diagnosis strategy based on the synchrosqueezing transform (SST) and genetic algorithm optimized deep convolution neural network (GA-DCNN) is proposed in this paper. Firstly, the time-frequency representations (TFRs) of the raw signals which is synthesized by ac current and inner circulating current of the MMC are calculated with SST. Then, DCNN is introduced to learn the underlying features from the TFRs, and its key hyperparameters are optimized with genetic algorithm. Meanwhile, batch normalization, dropout and data augment technologies are explored to prevent DCNN model from overfitting and improve model performance. Compared to traditional SVM and BP-based algorithms, SST-GA-DCNN achieve high diagnosis accuracy. The experimental results show the feasibility and applicability of the proposed fault diagnosis framework. (c) 2020 Elsevier B.V. All rights reserved.
机译:具有模块化多级转换器(MMC)拓扑的高压直流(HVDC)传输模式是传输工程的未来方向,安全性是其基本问题。 MMC在HVDC中的子模块故障是最常见的问题,然而,传统的时频的诊断技术无法达到高精度。为了解决这种痛苦,本文提出了一种基于同步变换(SST)和遗传算法优化的深度卷积神经网络(GA-DCNN)的新诊断策略。首先,用SST计算由MMC的AC电流和内循环电流合成的原始信号的时频表示(TFRS)。然后,引入DCNN以学习来自TFRS的底层特征,其密钥封面以遗传算法优化。同时,探讨了批量标准化,辍学和数据增强技术,以防止DCNN模型过度装备,提高模型性能。与传统的SVM和基于BP的算法相比,SST-GA-DCNN实现了高诊断精度。实验结果表明了提出的故障诊断框架的可行性和适用性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第21期|24-33|共10页
  • 作者单位

    Wuhan Univ Sci & Technol Sch Informat Sci & Engn Wuhan 430081 Peoples R China|Huanggang Normal Univ Sch Electromech & Automobile Engn Huanggang 438000 Peoples R China;

    Wuhan Univ Sci & Technol Sch Informat Sci & Engn Wuhan 430081 Peoples R China;

    China Inst Marine Technol & Econ Beijing 100081 Peoples R China;

    Guangxi Special Equipment Inspect & Res Inst Nanning 530219 Peoples R China;

    Wuhan Univ Sci & Technol Sch Informat Sci & Engn Wuhan 430081 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Modular multilevel converter; Fault diagnosis; Synchrosqueezing transform; Genetic algorithm; Deep convolution neural network;

    机译:模块化多级转换器;故障诊断;同步凝固变换;遗传算法;深卷积神经网络;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号