首页> 外文期刊>Neurocomputing >TrajVAE: A Variational AutoEncoder model for trajectory generation
【24h】

TrajVAE: A Variational AutoEncoder model for trajectory generation

机译:Trajvae:用于轨迹生成的变形式自动化器模型

获取原文
获取原文并翻译 | 示例

摘要

Large-scale trajectory dataset is always required for self-driving and many other applications. In this paper, we focus on the trajectory generation problem, which aims to generate qualified trajectory dataset that is indistinguishable from real trajectories, for fulfilling the needs of large-scale trajectory data by self-driving simulation and traffic analysis tasks in data sparse cities or regions. We propose two advanced solutions, namely TrajGAN and TrajVAE, which utilize LSTM to model the characteristics of trajectories first, and then take advantage of Generative Adversarial Network (GAN) and Variational AutoEncoder (VAE) frameworks respectively to generate trajectories. In order of compare the similarity of existing trajectories in our dataset and the generated trajectories, we utilize multiple trajectory similarity metrics. Through several experiments, we demonstrate that our method is more accurate and stable than the baseline. (C) 2020 Elsevier B.V. All rights reserved.
机译:自动驾驶和许多其他应用程序始终需要大规模轨迹数据集。在本文中,我们专注于轨迹生成问题,旨在生成与真实轨迹无法区分的合格轨迹数据集,用于通过自动驾驶仿真和数据稀疏城市中的交通分析任务来满足大规模轨迹数据的需求地区。我们提出了两个先进的解决方案,即Trajgan和Trajvae,利用LSTM首先利用轨迹的特征,然后分别利用生成的对抗网络(GAN)和变形AutoEncoder(VAE)框架来产生轨迹。按顺序比较我们数据集中的现有轨迹的相似性和生成的轨迹,我们利用多个轨迹相似度量。通过几个实验,我们证明我们的方法比基线更准确和稳定。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第7期|332-339|共8页
  • 作者单位

    Soochow Univ Sch Comp Sci & Technol Suzhou Peoples R China;

    Soochow Univ Sch Comp Sci & Technol Suzhou Peoples R China|Neusoft Corp State Key Lab Software Architecture Shenyang Peoples R China;

    Swinburne Univ Technol Fac SET Melbourne Vic Australia;

    Soochow Univ Sch Comp Sci & Technol Suzhou Peoples R China;

    Soochow Univ Sch Comp Sci & Technol Suzhou Peoples R China;

    Swinburne Univ Technol Fac SET Melbourne Vic Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Trajectory generation; Generation model; Variational AutoEncoder (VAE); Long Short-Term Memory (LSTM);

    机译:轨迹生成;生成模型;变形式自动化器(VAE);长短期内存(LSTM);
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号