首页> 外文期刊>Neurocomputing >Considering anatomical prior information for low-dose CT image enhancement using attribute-augmented Wasserstein generative adversarial networks
【24h】

Considering anatomical prior information for low-dose CT image enhancement using attribute-augmented Wasserstein generative adversarial networks

机译:考虑使用属性增强的Wassersein生成对冲网络考虑了低剂量CT图像增强的解剖学现有信息

获取原文
获取原文并翻译 | 示例

摘要

Currently, many deep learning (DL)-based low-dose CT image postprocessing technologies fail to consider the anatomical differences in training data among different human body sites, such as the cranium, lung and pelvis. In addition, we can observe evident anatomical similarities at the same site among individuals. However, these anatomical differences and similarities are ignored in the current DL-based methods during the network training process. In this paper, we propose a deep network trained by introducing anatomical site labels, termed attributes for training data. Then, the network can adaptively learn to obtain the optimal weight for each anatomical site. By doing so, the proposed network can take full advantage of anatomical prior information to estimate high-resolution CT images. Furthermore, we employ a Wasserstein generative adversarial network (WGAN) augmented with attributes to preserve more structural details. Compared with the traditional networks that do not consider the anatomical prior and whose weights are consequently the same for each anatomical site, the proposed network achieves better performance by adaptively adjusting to the anatomical prior information. (c) 2020 Elsevier B.V. All rights reserved.
机译:目前,许多深度学习(DL)的低剂量CT图像后处理技术未能考虑不同人体部位之间的训练数据的解剖学差异,例如颅骨,肺和骨盆。此外,我们可以在个人之间观察同一部位的明显解剖相似之处。然而,在网络训练过程中,在当前的基于DL的方法中忽略了这些解剖学差异和相似性。在本文中,我们提出了一个通过引入解剖站点标签训练的深网络,被称为培训数据的属性。然后,网络可以自适应地学习获得每个解剖站点的最佳权重。通过这样做,所提出的网络可以充分利用解剖学现有信息来估计高分辨率CT图像。此外,我们使用Wasserstein生成的对抗网络(WAN)增强了属性以保持更多结构细节。与不考虑解剖学的传统网络相比,每个解剖站点的重量相同,所提出的网络通过自适应地调整解剖学先验信息来实现更好的性能。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第7期|104-115|共12页
  • 作者单位

    Huazhong Univ Sci & Technol Wuhan Natl Lab Optoelect Wuhan 430074 Peoples R China|Chinese Acad Sci Shenzhen Inst Adv Technol Lauterbur Res Ctr Biomed Imaging Shenzhen 518055 Peoples R China|Chinese Acad Sci Key Lab Hlth Informat Shenzhen 518055 Peoples R China|Huazhong Univ Sci & Technolog Sch Comp Sci & Technol Wuhan 430074 Peoples R China|Minist Educ China Engn Res Ctr Data Storage Syst & Technol Key Lab Informat Storage Syst Wuhan 430074 Peoples R China|Guizhou Prov Peoples Hosp Dept Radiol Guiyang 550002 Peoples R China;

    Guizhou Prov Peoples Hosp Dept Radiol Guiyang 550002 Peoples R China;

    Guizhou Prov Peoples Hosp Dept Radiol Guiyang 550002 Peoples R China;

    Huazhong Univ Sci & Technol Wuhan Natl Lab Optoelect Wuhan 430074 Peoples R China|Huazhong Univ Sci & Technolog Sch Comp Sci & Technol Wuhan 430074 Peoples R China|Minist Educ China Engn Res Ctr Data Storage Syst & Technol Key Lab Informat Storage Syst Wuhan 430074 Peoples R China;

    Huazhong Univ Sci & Technol Wuhan Natl Lab Optoelect Wuhan 430074 Peoples R China|Huazhong Univ Sci & Technolog Sch Comp Sci & Technol Wuhan 430074 Peoples R China|Minist Educ China Engn Res Ctr Data Storage Syst & Technol Key Lab Informat Storage Syst Wuhan 430074 Peoples R China;

    Chinese Acad Sci Shenzhen Inst Adv Technol Lauterbur Res Ctr Biomed Imaging Shenzhen 518055 Peoples R China;

    Chinese Acad Sci Shenzhen Inst Adv Technol Lauterbur Res Ctr Biomed Imaging Shenzhen 518055 Peoples R China|Chinese Acad Sci Key Lab Hlth Informat Shenzhen 518055 Peoples R China;

    Chinese Acad Sci Shenzhen Inst Adv Technol Lauterbur Res Ctr Biomed Imaging Shenzhen 518055 Peoples R China|Chinese Acad Sci Key Lab Hlth Informat Shenzhen 518055 Peoples R China;

    Chinese Acad Sci Shenzhen Inst Adv Technol Lauterbur Res Ctr Biomed Imaging Shenzhen 518055 Peoples R China|Chinese Acad Sci Key Lab Hlth Informat Shenzhen 518055 Peoples R China;

    Chinese Acad Sci Shenzhen Inst Adv Technol Lauterbur Res Ctr Biomed Imaging Shenzhen 518055 Peoples R China|Chinese Acad Sci Key Lab Hlth Informat Shenzhen 518055 Peoples R China;

    Chinese Acad Sci Shenzhen Inst Adv Technol Lauterbur Res Ctr Biomed Imaging Shenzhen 518055 Peoples R China|Chinese Acad Sci Key Lab Hlth Informat Shenzhen 518055 Peoples R China;

    Chinese Acad Sci Shenzhen Inst Adv Technol Lauterbur Res Ctr Biomed Imaging Shenzhen 518055 Peoples R China|Chinese Acad Sci Key Lab Hlth Informat Shenzhen 518055 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Low-dose CT; Image enhancement; Anatomical prior information; Attribute augmentation; Weight prediction;

    机译:低剂量CT;图像增强;解剖事先信息;属性增强;重量预测;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号