首页> 外文期刊>Neurocomputing >Training deep neural networks for wireless sensor networks using loosely and weakly labeled images
【24h】

Training deep neural networks for wireless sensor networks using loosely and weakly labeled images

机译:使用松散和弱标记的图像训练无线传感器网络的深度神经网络

获取原文
获取原文并翻译 | 示例

摘要

Although deep learning has achieved remarkable successes over the past years, few reports have been published about applying deep neural networks to Wireless Sensor Networks (WSNs) for image targets recognition where data, energy, computation resources are limited. In this work, a Cost-Effective Domain Generalization (CEDG) algorithm has been proposed to train an efficient network with minimum labor requirements. CEDG transfers networks from a publicly available source domain to an application specific target domain through an automatically allocated synthetic domain. The target domain is isolated from parameters tuning and used for model selection and testing only. The target domain is significantly different from the source domain because it has new target categories and is consisted of low quality images that are out of focus, low in resolution, low in illumination, low in photographing angle. The trained network has about 7 M (ResNet-20 is about 41 M) multiplications per prediction that is small enough to allow a digital signal processor chip to do real-time recognitions in our WSN. The category level averaged error on the unseen and unbalanced target domain has been decreased by 41.12%. (c) 2020 Published by Elsevier B.V.
机译:虽然在过去几年中,深度学习取得了卓越的成功,但是关于将深度神经网络应用于无线传感器网络(WSN)的图像目标识别有很多报告,其中包括数据,能量,计算资源有限。在这项工作中,已经提出了一种经济高效的域泛化(CEDG)算法以培训具有最低劳动要求的有效网络。 CEDG通过自动分配的合成域将网络从公共可用的源域传输到应用程序特定的目标域。目标域与参数调谐隔离,仅用于模型选择和测试。目标域与源域显着差异,因为它具有新的目标类别,并且由低质量图像组成,这些图像由焦点,低分辨率低,照明中低,拍摄角度低。培训的网络具有大约7米(Reset-20约为41米)的乘法,其预测足够小,以允许数字信号处理器芯片在我们的WSN中进行实时识别。看不见的目标域上的类别级别平均误差已减少41.12%。 (c)2020由elsevier b.v发布。

著录项

  • 来源
    《Neurocomputing》 |2021年第28期|64-73|共10页
  • 作者单位

    Zhejiang Univ Technol Coll Comp Sci & Technol Hangzhou 310023 Peoples R China|Key Lab Visual Media Intelligent Proc Technol Zhe Hangzhou 310023 Peoples R China;

    Zhejiang Univ Technol Coll Comp Sci & Technol Hangzhou 310023 Peoples R China|Key Lab Visual Media Intelligent Proc Technol Zhe Hangzhou 310023 Peoples R China;

    Chinese Acad Sci Shanghai Inst Microsyst & Informat Technol Shanghai 200050 Peoples R China;

    Zhejiang Univ Technol Coll Comp Sci & Technol Hangzhou 310023 Peoples R China|Key Lab Visual Media Intelligent Proc Technol Zhe Hangzhou 310023 Peoples R China;

    Zhejiang Univ Technol Coll Comp Sci & Technol Hangzhou 310023 Peoples R China|Key Lab Visual Media Intelligent Proc Technol Zhe Hangzhou 310023 Peoples R China;

    Chinese Acad Sci Shanghai Inst Microsyst & Informat Technol Shanghai 200050 Peoples R China;

    Zhejiang Univ Technol Coll Comp Sci & Technol Hangzhou 310023 Peoples R China|Key Lab Visual Media Intelligent Proc Technol Zhe Hangzhou 310023 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Deep neural networks; Wireless sensor networks; Automated data labeling; Image recognition; Transfer learning; Model compression;

    机译:深神经网络;无线传感器网络;自动数据标记;图像识别;转移学习;模型压缩;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号