首页> 外文期刊>Neurocomputing >Design and analysis of a noise-suppression zeroing neural network approach for robust synchronization of chaotic systems
【24h】

Design and analysis of a noise-suppression zeroing neural network approach for robust synchronization of chaotic systems

机译:混沌系统鲁棒同步噪声抑制归零神经网络方法的设计与分析

获取原文
获取原文并翻译 | 示例

摘要

Robust synchronization of chaotic systems with time-varying external disturbances is a hot topic in the field of science and engineering. In view of the negative influence of complex noise on the synchronization of chaotic systems, a noise-suppression zeroing neural network (NSZNN) is designed and proposed to effectively resist time-varying external disturbances. Compared with existing zeroing neural network models only for bounded noise, the proposed (NSZNN) model has consistent robustness for both bounded and unbounded noises. Furthermore, the design process, theoretical analysis and numerical verification of the NSZNN are presented in detail. Both theoretical and numerical results show that the NSZNN has better synchronization control performance of chaotic systems under bounded and unbounded noises, as compared with existing zeroing neural network models. (C) 2020 Elsevier B.V. All rights reserved.
机译:多变外部干扰的混沌系统的鲁棒同步是科学和工程领域的热门话题。鉴于复杂噪声对混沌系统同步的负面影响,设计了一种噪声抑制归零神经网络(NSZNN),并提出有效地抵抗时变的外部干扰。与仅用于有界噪声的现有归零神经网络模型相比,所提出的(NSZNN)模型对界限和无界噪声具有一致的鲁棒性。此外,详细介绍了NSZNN的设计过程,理论分析和数值验证。与现有的归零神经网络模型相比,理论和数值结果都表明,NSZNN在界限和无界噪声下的混沌系统具有更好的同步控制性能。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第22期|299-308|共10页
  • 作者单位

    Hunan Normal Univ Coll Hunan Prov Key Lab Intelligent Comp & Langua Changsha 410081 Peoples R China;

    Hunan Normal Univ Coll Hunan Prov Key Lab Intelligent Comp & Langua Changsha 410081 Peoples R China;

    Hunan Normal Univ Coll Hunan Prov Key Lab Intelligent Comp & Langua Changsha 410081 Peoples R China;

    Hunan Normal Univ Coll Hunan Prov Key Lab Intelligent Comp & Langua Changsha 410081 Peoples R China;

    Hunan Normal Univ Coll Hunan Prov Key Lab Intelligent Comp & Langua Changsha 410081 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Zeroing neural network; Synchronization; Chaotic systems; Bounded noise; Unbounded noise;

    机译:归零神经网络;同步;混沌系统;有界噪声;无限噪音;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号