首页> 外文期刊>Neurocomputing >Towards unsupervised text multi-style transfer with parameter-sharing scheme
【24h】

Towards unsupervised text multi-style transfer with parameter-sharing scheme

机译:走向无监督的文本与参数共享方案的多种式转移

获取原文
获取原文并翻译 | 示例

摘要

Text style transfer is an important task in the field of natural language generation. Because of the lack of parallel data, it is a challenge to address this problem in an unsupervised manner. Existing methods mainly focus on the two-style transfer task, i.e. from one source style to one target style. In this paper, we first propose the task of unsupervised text multi-style transfer to address the problem of efficient text transfer from a source style to multiple target styles. To tackle this new task, we present a novel model based on Non-Autoregressive Transformer (NAT). The model consists of two parts: a parameter-shared style-independent module and a style-dependent module. In practice, we only need to reinitialize the parameter of style-dependent modules and retrain the whole model which can converge fast. Experimental results show that our model not only performs well in two-style transfer task, but also promises good results in the multi-style scenario. (C) 2020 Elsevier B.V. All rights reserved.
机译:文本样式传输是自然语言生成领域的重要任务。由于缺乏并行数据,以无人监督的方式解决这个问题是一个挑战。现有方法主要关注双重传输任务,即从一个源样式到一个目标样式。在本文中,我们首先提出了无监督的文本多种式转移任务,以解决从源风格到多个目标样式的有效文本转移的问题。为了解决这项新任务,我们提出了一种基于非自动变压器(NAT)的新型模型。该模型由两部分组成:参数共享的独立模块和依赖样式模块。在实践中,我们只需要重新初始化样式依赖模块的参数并重新培训可以快速收敛的整个模型。实验结果表明,我们的模型不仅在两种式转移任务中表现良好,而且还承诺在多种式方案中获得良好的结果。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第22期|227-234|共8页
  • 作者单位

    Peking Univ Sch Elect Engn & Comp Sci Minist Educ Key Lab Machine Percept Beijing Peoples R China;

    Peking Univ Sch Elect Engn & Comp Sci Minist Educ Key Lab Machine Percept Beijing Peoples R China;

    Peking Univ Sch Elect Engn & Comp Sci Minist Educ Key Lab Machine Percept Beijing Peoples R China;

    Peking Univ Sch Elect Engn & Comp Sci Minist Educ Key Lab Machine Percept Beijing Peoples R China;

    Sejong Univ Dept Comp Engn Seoul South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Text style transfer; Multi-style; Unsupervised learning; Parameter-sharing;

    机译:文字样式转移;多风格;无监督学习;参数共享;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号