首页> 外文期刊>Neurocomputing >A semi-supervised learning algorithm via adaptive Laplacian graph
【24h】

A semi-supervised learning algorithm via adaptive Laplacian graph

机译:自适应拉普拉斯图的半监督学习算法

获取原文
获取原文并翻译 | 示例

摘要

Many semi-supervised learning methods have been developed in recent years, especially graph-based approaches, which have achieved satisfactory performance in the practical applications. There are two points that need to be noticed. Firstly, the quality of the graph directly affects the final classification accuracy. However, graph-based algorithms mostly use k-Nearest Neighbor to construct the graph. And the directly constructed graph is inaccurate due to outliers and erroneous features in the data. Secondly, the amount of labeled data is a small part of all data. It cannot be guaranteed that all categories of data are included in the labeled data and the labels of data are not totally correct in practice. To address the aforementioned problems, we propose a new graph-based semi-supervised method named ALGSSL via adaptive Laplacian graph. In the algorithm, we adaptively update the graph to reduce the sensitiveness of the construction of initial graph. Meanwhile, we use the regularization parameters to set confidence on existing labels, which can reduce the impact of the error labels on the result and discover the new category. Experiments on three toy datasets and nine benchmark datasets demonstrate the proposed method can achieve good performance. (C) 2020 Elsevier B.V. All rights reserved.
机译:近年来已经开发了许多半监督学习方法,特别是基于图形的方法,在实际应用中取得了令人满意的性能。有两点需要注意。首先,图的质量直接影响最终的分类准确性。但是,基于图形的算法主要使用K-Collect邻居来构造图形。由于数据中的异常值和错误功能,直接构造的图形是不准确的。其次,标记数据的数量是所有数据的一小部分。它不能保证所有类别的数据都包含在标记数据中,并且在实践中数据的标签并不完全正确。为了解决上述问题,我们提出了一种通过自适应Laplacian图表命名为AlgsSL的基于图形的半监督方法。在算法中,我们自适应地更新图形以降低初始图构造的敏感性。同时,我们使用正则化参数来对现有标签设置信心,这可以减少错误标签对结果并发现新类别的影响。在三个玩具数据集和九个基准数据集上的实验证明了所提出的方法可以实现良好的性能。 (c)2020 Elsevier B.v.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号