首页> 外文期刊>Neurocomputing >A tutorial on distance metric learning: Mathematical foundations,algorithms, experimental analysis, prospects and challenges
【24h】

A tutorial on distance metric learning: Mathematical foundations,algorithms, experimental analysis, prospects and challenges

机译:距离度量学习教程:数学基础,算法,实验分析,前景和挑战

获取原文
获取原文并翻译 | 示例

摘要

Distance metric learning isa branch of machine learning that aims to learn distances from the data, which enhances the performance of similarity-based algorithms. This tutorial provides a theoretical background and foundations on this topic and a comprehensive experimental analysis of the most-known algorithms. We start by describing the distance metric learning problem and its main mathematical foundations, divided into three main blocks: convex analysis, matrix analysis and information theory. Then, we will describe a representative set of the most popular distance metric learning methods used in classification. All the algorithms studied in this paper will be evaluated with exhaustive testing in order to analyze their capabilities in standard classification problems, particularly considering dimensionality reduction and kernelization. The results, verified by Bayesian statistical tests, highlight a set of outstanding algorithms. Finally, we will discuss several potential future prospects and challenges in this field. This tutorial will serve as a starting point in the domain of distance metric learning from both a theoretical and practical perspective.(c) 2020 Elsevier B.V. All rights reserved.
机译:距离度量学习ISA分支的机器学习旨在从数据学习距离,这提高了基于相似性的算法的性能。本教程提供了关于本主题的理论背景和基础,以及对最着名的算法进行了全面的实验分析。我们首先描述距离度量学习问题及其主要数学基础,分为三个主块:凸分析,矩阵分析和信息理论。然后,我们将描述分类中使用的最流行距离度量学习方法的代表性集。本文研究的所有算法将通过详尽的测试进行评估,以分析其在标准分类问题中的能力,特别是考虑减少维度和内核。结果,通过贝叶斯统计测试验证,突出了一组出色的算法。最后,我们将讨论该领域的几个潜在的未来前景和挑战。本教程将作为距离度量学习领域的起点,从理论和实际的角度来看。(c)2020 Elsevier B.v.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号