首页> 外文期刊>Neurocomputing >Utterance-focusing multiway-matching network for dialogue-based multiple-choice machine reading comprehension
【24h】

Utterance-focusing multiway-matching network for dialogue-based multiple-choice machine reading comprehension

机译:用于对话的基于对话的多选择机器阅读理解的话语聚焦多道匹配网络

获取原文
获取原文并翻译 | 示例

摘要

Dialogue-based multiple-choice machine reading comprehension (MRC) is one of most difficult and novel tasks because it requires more advanced reading comprehension skills, such as speaker & rsquo;s intention analysis, non-extractive reasoning, commonsense knowledge. Previous models usually only compute attention scores from the fixed representation of entire dialogue, and also do not fully consider the contribution of dialogue, question, options, and their combinations respectively. In this paper, we introduce Utterance-focusing Multiway-matching Network (UMN), a simple but effective human mimicking model for dialogue-based multiple-choice MRC. First, two utterance-focusing mechanisms called ParaUF and AutoUF are proposed to extract the utterances that are most relevant to the question and option: ParaUF gets the bilinear weighted distance between each utterance of dialogue and question and option during training while AutoUF obtains the scores by the relevance, overlap and coverage (ROC) rules before training process. Second, we adopted the multiway-matching mechanism to capture the relationship among the question, option and selected utterances through calculating the attention weights between the quadruplet of four sequences: utterances, question, option and the concatenation of each two. We evaluate the proposed model on dialogue-based multiple-choice MRC tasks, DREAM, and outperformed recently published methods under the same pre-trained model. A series of detailed analysis is also conducted to interpret the differences of two utterance-focusing mechanisms and the effectiveness of the proposed multiway-matching mechanism.(c) 2020 Elsevier B.V. All rights reserved.
机译:基于对话的多项选择机器阅读理解(MRC)是最困难和新的任务之一,因为它需要更高级的阅读理解技能,例如发言者和rsquo;■意图分析,非提取推理,致辞知识。以前的型号通常只能从整个对话的固定表示中计算注意力分数,也没有完全考虑分别对话,问题,选项及其组合的贡献。在本文中,我们介绍了一种对抗对话的多选择MRC的简单但有效的人类模拟模型的话语聚焦多道网络(UMN)。首先,提出了两个称为PARAUF和Autouf的话语聚焦机制,以提取与问题和选项最相关的话语:PARAUF在训练期间在训练期间的对话和问题和选项之间的每种话语之间获得双线性加权距离在培训过程之前的相关性,重叠和覆盖(ROC)规则。其次,我们采用了多道匹配机制来捕获问题,选择和所选话语之间的关系,通过计算四个序列的四元序列之间的注意力:言论,问题,选项和每两个的串联。我们在相同的预先训练模型下评估了基于对话的多选择MRC任务,梦想和优先表现出的拟议模型。还进行了一系列详细分析,以解释两个话语聚焦机制的差异以及所提出的多道匹匹配机制的有效性。(c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第15期|12-22|共11页
  • 作者

    Gu Yingjie; Gui Xiaolin; Li Defu;

  • 作者单位

    Xi An Jiao Tong Univ Fac Elect & Informat Engn Xian 710049 Peoples R China|Xi An Jiao Tong Univ Shaanxi Prov Key Lab Comp Network Xian 710049 Peoples R China;

    Xi An Jiao Tong Univ Fac Elect & Informat Engn Xian 710049 Peoples R China|Xi An Jiao Tong Univ Shaanxi Prov Key Lab Comp Network Xian 710049 Peoples R China;

    Xi An Jiao Tong Univ Fac Elect & Informat Engn Xian 710049 Peoples R China|Xi An Jiao Tong Univ Shaanxi Prov Key Lab Comp Network Xian 710049 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Machine reading comprehension; Multiple choice; Dialogue; Attention;

    机译:机器阅读理解;多项选择;对话;注意力;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号