首页> 外文期刊>Neurocomputing >No-reference stereoscopic image quality assessment based on global and local content characteristics
【24h】

No-reference stereoscopic image quality assessment based on global and local content characteristics

机译:基于全局和本地内容特征的无参考立体图像质量评估

获取原文
获取原文并翻译 | 示例

摘要

No-reference stereoscopic images quality assessment (NR-SIQA) via deep learning has gained increasing attention. In this paper, we propose a no-reference stereoscopic image quality assessment method based on global and local content characteristics. The proposed method simulates the perception route of human visual system, and derives features from the fused view and single view through the global feature fusion sub-network and local feature enhancement sub-network. As for the fused view, a cross fusion strategy is applied to model the process in the V1 visual cortex, and the multi-scales pooling (MSP) is utilized to integrate context information under different sub-regions for effective global feature extraction. As for the single view, the asymmetric convolution block (ACB) is introduced to strengthen the local information description. By jointly considering the fused view and single view, the proposed network can efficiently extract the features for quality assessment. Finally, a weighted average strategy is applied to estimate the visual quality of stereoscopic image. Experimental results on 3D quality databases demonstrate that the proposed network is superior to the state-of-the-art metrics, and achieves an excellent performance. (c) 2020 Elsevier B.V. All rights reserved.
机译:无参考立体图像质量评估(NR-SIQA)通过深度学习获得了越来越关注。在本文中,我们提出了一种基于全局和局部内容特征的无参考立体图像质量评估方法。该方法模拟了人类视觉系统的感知路径,通过全局特征融合子网络和本地特征增强子网来源自融合视图和单个视图的特征。对于融合视图,应用跨融合策略来模拟V1 Visual Cortex中的过程,并且利用多标度池(MSP)来集成在不同子区域下的上下文信息以进行有效的全局特征提取。至于单视图,引入非对称卷积块(ACB)以增强本地信息描述。通过联合考虑融合视图和单一视图,所提出的网络可以有效地提取质量评估的特征。最后,应用加权平均策略来估计立体图像的视觉质量。 3D质量数据库的实验结果表明,所提出的网络优于最先进的指标,并实现了出色的性能。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第1期|132-142|共11页
  • 作者单位

    Tianjin Univ Sch Elect & Informat Engn Weijin Rd Tianjin 300072 Peoples R China;

    Tianjin Univ Sch Elect & Informat Engn Weijin Rd Tianjin 300072 Peoples R China;

    Tianjin Univ Sch Elect & Informat Engn Weijin Rd Tianjin 300072 Peoples R China|Xidian Univ State Key Lab Integrated Serv Networks Xian 710071 Peoples R China;

    China Elect Standardizat Inst Beijing 100007 Peoples R China;

    Guangzhou SequoiaDB Co Guangzhou 510006 Peoples R China;

    Tianjin Univ Sch Elect & Informat Engn Weijin Rd Tianjin 300072 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Stereoscopic images quality assessment; Cross-fusion; Multi-scales pooling; Asymmetric convolution block; Weighted average;

    机译:立体图像质量评估;交叉融合;多标尺汇集;非对称卷积块;加权平均值;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号