首页> 外文期刊>Neurocomputing >Atrous convolutional feature network for weakly supervised semantic segmentation
【24h】

Atrous convolutional feature network for weakly supervised semantic segmentation

机译:用于弱监督语义细分的酷刑卷积特征网络

获取原文
获取原文并翻译 | 示例

摘要

Weakly supervised semantic segmentation has been attracting increasing attention as it can alleviate the need for expensive pixel-level annotations through the use of image-level labels. Relevant methods mainly rely on the implicit object localization ability of convolutional neural networks (CNNs). However, generated object attention maps remain mostly small and incomplete. In this paper, we propose an Atrous Convolutional Feature Network (ACFN) to generate dense object attention maps. This is achieved by enhancing the context representation of image classification CNNs. More specifically, cascaded atrous convolutions are used in the middle layers to retain sufficient spatial details, and pyramidal atrous convolutions are used in the last convolutional layers to provide multi-scale context information for the extraction of object attention maps. Moreover, we propose an attentive fusion strategy to adaptively fuse the multi-scale features. Our method shows improvements over existing methods on both the PASCAL VOC 2012 and MS COCO datasets, achieving state-of-the-art performance. (c) 2020 Elsevier B.V. All rights reserved.
机译:弱监督的语义细分一直吸引了越来越多的关注,因为它可以通过使用图像级标签来缓解昂贵的像素级注释的需求。相关方法主要依赖于卷积神经网络(CNNS)的隐式对象定位能力。但是,生成的对象注意映射仍然小而不完整。在本文中,我们提出了一个不足的卷积特征网络(ACFN)来产生密集的物体注意图。这是通过增强图像分类CNN的上下文表示来实现的。更具体地说,级联的互溶卷曲用于中间层以保留足够的空间细节,并且金字塔空间卷积用于最后的卷积层,以提供用于提取物体注意图的多尺度上下文信息。此外,我们提出了一种临床融合策略来自适应地融合多尺度特征。我们的方法显示了Pascal VOC 2012和MS Coco Datasets的现有方法的改进,实现了最先进的性能。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号