首页> 外文期刊>Neurocomputing >Hyper-parameter-evolutionary latent factor analysis for high-dimensional and sparse data from recommender systems
【24h】

Hyper-parameter-evolutionary latent factor analysis for high-dimensional and sparse data from recommender systems

机译:来自推荐系统的高维和稀疏数据的超参数 - 进化潜在因子分析

获取原文
获取原文并翻译 | 示例

摘要

High-dimensional and Sparse (HiDS) data generated by recommender systems (RSs) contain rich knowledge regarding users' potential preferences. A Latent factor analysis (LFA) model enables efficient extraction of essential features from such data. However, an LFA model relies heavily on its hyper-parameters like learning rate and regularization coefficient, which must be chosen with care. However, traditional grid-search-based manual tuning is extremely time-consuming and computationally expensive. To address this issue, this study proposes a hyper-parameter-evolutionary latent factor analysis (HLFA) model. Its main idea is to build a swarm by taking the hyper-parameters of every single LFA-based model as particles, and then apply particle swarm optimization (PSO) to make its both hyper-parameters, i.e., the learning rate and regularization coefficient, self-adaptive according to a pre-defined fitness function. Experimental results on six HiDS matrices from real RSs indicate that an HLFA model outperforms several state-of-the-art LF models in terms of computational efficiency, and most importantly, without loss of prediction accuracy for missing data of an HiDS matrix. (c) 2020 Elsevier B.V. All rights reserved.
机译:由推荐系统(RSS)生成的高维和稀疏(HID)数据包含有关用户潜在偏好的丰富知识。潜在因子分析(LFA)模型可以有效地提取来自这些数据的基本特征。然而,LFA模型在很大程度上依赖于其超参数,如学习率和正则化系数,必须用小心选择。但是,基于传统的网格搜索的手动调整非常耗时和计算昂贵。为了解决这个问题,本研究提出了一种超参数进化潜在因子分析(HLFA)模型。其主要思想是通过将每个基于LFA的模型作为粒子的超级参数进行群体,然后应用粒子群优化(PSO)来进行超参数,即学习率和正则化系数,根据预定定义的健身功能自适应。真实RSS的六个HIDS矩阵的实验结果表明,HLFA模型在计算效率方面优于几种最先进的LF模型,最重要的是,对于缺少HIDS矩阵的数据而不会丢失预测准确性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第15期|316-328|共13页
  • 作者单位

    Dongguan Univ Technol Sch Comp Sci & Technol Dongguan 523808 Guangdong Peoples R China|China West Normal Univ Sch Comp Sci Nanchong 637002 Sichuan Peoples R China;

    Chinese Acad Sci Chongqing Engn Res Ctr Big Data Applicat Smart Ci Chongqing Inst Green & Intelligent Technol Chongqing 400714 Peoples R China|Chinese Acad Sci Chongqing Key Lab Big Data & Intelligent Comp Chongqing Inst Green & Intelligent Technol Chongqing 400714 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;

    China Patent Informat Ctr Beijing 100088 Peoples R China;

    Beihang Univ Sch Cyber Sci & Technol Beijing 100191 Peoples R China;

    Dongguan Univ Technol Sch Comp Sci & Technol Dongguan 523808 Guangdong Peoples R China|Chinese Acad Sci Chongqing Inst Green & Intelligent Technol Chongqing 400714 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Big Data; Intelligent Computation; Latent Factor Analysis; Evolutionary Computing; Learning Algorithm; High-dimensional and Sparse Data; Parameter Free;

    机译:大数据;智能计算;潜在因子分析;进化计算;学习算法;高维和稀疏数据;参数免费;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号