首页> 外文期刊>Neurocomputing >Infrared facial expression recognition via Gaussian-based label distribution learning in the dark illumination environment for human emotion detection
【24h】

Infrared facial expression recognition via Gaussian-based label distribution learning in the dark illumination environment for human emotion detection

机译:基于高斯的标签分布学习的红外面部表情识别在黑暗照明环境中的情感检测

获取原文
获取原文并翻译 | 示例

摘要

Facial expression recognition task as a crucial step for emotion recognition remains an open challenge that due to individual expression correlation/ambiguity. In this paper, to tackle these challenges, a novel model with the correlation emotion label distribution learning is proposed for near-infrared (NIR) facial expression recognition which associates multiple emotions with each expression depend on the similarity of expressions. Firstly, the similarities of the seven basic expressions are calculated, and then guide the correlation emotion label distribution by predicting the latent label probability distribution of the expression. Furthermore, the proposed model can be learned in an end-to-end manner via a constructed convolutional neural network to classify the six basic facial expressions. Experimental results on Oulu_CASIA database demonstrate that the proposed method has achieved the superior performance on NIR expression recognition. (C) 2020 Elsevier B.V. All rights reserved.
机译:面部表情识别任务作为情感识别的关键步骤仍然是由于个体表达相关/歧义的开放挑战。在本文中,为了解决这些挑战,提出了一种与相关情绪标签分布学习的新型模型,用于近红外(NIR)面部表情识别,其将多种情绪与每个表达式相关联取决于表达式的相似性。首先,计算七种基本表达式的相似性,然后通过预测表达的潜在标签概率分布来指导相关情绪标签分布。此外,所提出的模型可以通过构造的卷积神经网络以端到端的方式学习,以对六个基本面部表达进行分类。 OULU_CASIA数据库的实验结果表明,该方法已经实现了NIR表达识别的卓越性能。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号