首页> 外文期刊>Neurocomputing >Asymmetric CycleGAN for image-to-image translations with uneven complexities
【24h】

Asymmetric CycleGAN for image-to-image translations with uneven complexities

机译:用于图像到图像转换的不对称转速,具有不均匀复杂性

获取原文
获取原文并翻译 | 示例

摘要

CycleGAN is one of the famous and basic methods for unpaired image-to-image translation tasks. Inspired by the experiments of the NIR-RGB translation, which is a kind of translation where images are translated from simple to complex or vice versa, we concluded the definition of asymmetric translation task. Because of the complexity difference between two domains, the complexity inequality in bidirectional translations is significant. We analyzed and witnessed the limitation of the original CycleGAN in asymmetric translation tasks and proposed an Asymmetric CycleGAN model with generators of unequal sizes to adapt to the asymmetric need in asymmetric translations. An empirical metric was also given to determine the asymmetric task from the aspect of image entropy and could be treated as the auxiliary guidance to design the asymmetric generators. Besides, the edge-retain loss between the input and the generated images was introduced to enhance the structural visual quality. Residual-block-net based and U-net based generators were both applied here to verify the Asymmetric CycleGAN. The performance of different depth of generators for Asymmetric CycleGAN was also discussed on the basis of experiments. The qualitative visual evaluation demonstrated that our model had achieved great improvements compared to original CycleGAN. (C) 2020 Elsevier B.V. All rights reserved.
机译:Compygan是未配对图像到图像到图像转换任务的着名和基本方法之一。灵感来自NIR-RGB翻译的实验,这是一种翻译图像从简单到复杂的图像,反之亦然,我们得出了不对称翻译任务的定义。由于两个域之间的复杂性差异,双向翻译中的复杂性不等式是显着的。我们分析并目睹了非对称翻译任务的原始加工过程的限制,并提出了一种非对称传输模型,具有不平等尺寸的发电机,以适应不对称翻译的不对称。还给出了实证度量来确定来自图像熵的方面的非对称任务,并且可以被视为设计非对称发电机的辅助引导。此外,引入了输入和所产生的图像之间的边缘保持损耗以增强结构视觉质量。剩余块基于基于U-NET的发电机均均应用于验证不对称的Cycleangan。还在实验的基础上讨论了用于非对称传动机的不同发电机深度的性能。定性视觉评估表明,与原始Conscargan相比,我们的模型实现了很大的改进。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第20期|114-122|共9页
  • 作者单位

    Chinese Acad Sci Inst Automat Beijing Peoples R China|Univ Chinese Acad Sci Beijing Peoples R China;

    Chinese Acad Sci Inst Automat Beijing Peoples R China|Univ Chinese Acad Sci Beijing Peoples R China;

    Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing Peoples R China;

    Chinese Acad Sci Inst Automat Beijing Peoples R China|Univ Chinese Acad Sci Beijing Peoples R China;

    Chinese Acad Sci Inst Automat Beijing Peoples R China|Univ Chinese Acad Sci Beijing Peoples R China|Beijing Visyst Co Ltd Beijing Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Unpaired Image Translation; CycleGAN; Asymmetric Translation; Average Image Entropy; Edge-retain Prior;

    机译:未配对的图像翻译;Cryctgan;不对称翻译;平均图像熵;边缘预留;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号