首页> 外文期刊>Neurocomputing >Heterogeneous teaching evaluation network based offline course recommendation with graph learning and tensor factorization
【24h】

Heterogeneous teaching evaluation network based offline course recommendation with graph learning and tensor factorization

机译:基于异构教学评估网络的离线课程推荐与图形学习和张量分解

获取原文
获取原文并翻译 | 示例

摘要

Course recommendation systems are applied to help students with different needs select courses in a large range of course resources. However, a student's needs are not always determined by their personal interests, they are also influenced by teachers, peers etc. Unlike online courses, user behavior and user satisfaction of offline courses often have serious sparse and cold start issues, which cause overfitting problems in previous neural network and matrix factorization (MF) models. Additionally, the interpersonal relations, evaluation text and existing "user-item" formatted rating matrix constitute a multi-source and multi-modal data structure, so a systematic data fusion method is needed to establish recommendations based on these heterogeneous characteristics. Therefore, a hybrid recommendation model by fusing network structured feature with graph neural networks and user interactive activities with tensor factorization was proposed in this paper. First, a graph structured teaching evaluation network is proposed to describe students, courses, and other entities by using the students' rating, commentary text, grading and interpersonal relations. Then, a random walk based neural network is employed to generate the vectorized representation of students by learning their own relational structure. Finally, by recognizing these personalization features as the third dimension of the rating tensor, a Bayesian Probabilistic Tensor Factorization-based tensor factorization is applied to learn and predict students' ratings for classes they have not taken. Experiments on a real-world evaluation of teaching system including 532 participants with 7,453 rating records show that the proposed method outperforms other existing neural network and matrix factorization models including xSVD++, RTTF and DSE with a smaller predictive error as well as better recommendation accuracy. (C) 2020 Elsevier B.V. All rights reserved.
机译:课程推荐系统适用于帮助不同需求的学生在各种课程资源中选择课程。然而,学生的需求并不总是因其个人利益而决定,它们也受到教师,同行等的影响。与在线课程不同,用户行为和用户对离线课程的满意度经常具有严重的稀疏和冷酷的起点,这导致了过度的问题以前的神经网络和矩阵分解(MF)模型。另外,人际关系,评估文本和现有的“用户项”格式化额定矩阵构成了多源和多模态数据结构,因此需要基于这些异构特征来建立建议的系统数据融合方法。因此,本文提出了通过用图形神经网络和具有张量分解的图形神经网络和用户互动活动来定影网络结构化特征的混合推荐模型。首先,建议通过使用学生的评级,评论文本,评分和人际关系来描述学生,课程和其他实体的图形结构化教学评估网络。然后,采用随机步行的神经网络来通过学习自己的关系结构来生成学生的矢量化表示。最后,通过认识到这些个性化特征作为评级张量的第三维度,基于贝叶斯概率的张量分解的张解浪或学习和预测他们没有采取的课程的评级。关于教学系统实际评估的实验,包括532名评级记录,包括7,453名评级记录,表明,该方法优于其他现有的神经网络和矩阵分解模型,包括XSVD ++,RTTF和DSE,具有更小的预测误差以及更好的推荐准确性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第20期|84-95|共12页
  • 作者单位

    Beijing Inst Technol Sch Comp Sci & Technol Beijing 100081 Peoples R China;

    Beijing Inst Technol Sch Comp Sci & Technol Beijing 100081 Peoples R China;

    Beijing Inst Technol Sch Comp Sci & Technol Beijing 100081 Peoples R China;

    Beijing Inst Technol Sch Comp Sci & Technol Beijing 100081 Peoples R China;

    Univ Dar Es Salaam Comp Sci & Engn Dept Dar Es Salaam 35091 Tanzania;

    Beijing Inst Technol Sch Comp Sci & Technol Beijing 100081 Peoples R China|Beijing Inst Technol Lib Beijing 100081 Peoples R China|Univ Pittsburgh Sch Comp & Informat Pittsburgh PA 15260 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Offline course recommendation; Tensor factorization; Teaching evaluation network; Rating prediction; Personalized recommendation; e-learning;

    机译:离线课程建议;张量分解;教学评估网络;评级预测;个性化推荐;电子学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号